

Official publication of Pakistan Phytopathological Society

Pakistan Journal of Phytopathology

BACTERIA IN FUNGAL CULTURES ISOLATED FROM THE SOLANACEAE FAMILY PLANTS

^aVladislav A. Platonov., ^{a,b}Sergey N. Elansky ., ^a Elena M.Chudinova *

Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
 Lomonosov Moscow State University, 119991 Moscow, Russia.

ABSTRACT

A study of the presence and diversity of bacteria in cultures of fungi isolated from plants of the Solanaceae family (potato and tomato) was carried out using PCR with bacterial primers, followed by sequencing of the amplicons. A total of 83 strains were tested and bacteria were found in most of them. Bacteria of the following taxa were found in fungi: Ceratobasidium sp. (Delftia sp.), Cladosporium cladosporioides (Paenibacillus sp.), Ilyonectria crassa (Enterobacter sp.), Fusarium avenaceum (Rahnella sp., Stenotrophomonas sp.), F. equiseti (Pseudomonas sp., Klebsiella sp., Pseudomonas sp., Pantoea sp., Stenotrophomonas sp.), F. graminearum (Stenotrophomonas sp.), F. merismoides (Luteolibacter sp.), F. merkxianum (Stenotrophomonas sp.), F. oxysporum (Kosakonia sp., Achromobacter sp., Stenotrophomonas sp., Pantoea sp., Delftia sp., Lelliottia sp., Pseudomonas sp.), F. torulosum (Flavobacterium sp.), Orbilia oligospora (Lacrimispora sp.), Plectosphaerella cucumerina (Pantoea sp.), Pyrenochaeta sp. (Herbaspirillum sp.), and Rhizoctonia solani (Achromobacter sp.). No correlation was found between specific bacterial and fungal species. The impact of the identified bacteria on plants can vary, from involvement in pathogenesis to stimulating of growth, and needs further study. Bacteria associated with fungi can be used in the production of biological products with protective and growthregulating effects. Combining such bacteria with non-pathogenic fungi will increase their survival; the resulting fungalbacterial associations can be used to create growth-stimulating biological products with a long shelf life. The possible presence of dangerous bacteria in plant pathogenic fungi should be considered when developing plant protection measures.

Keywords: fungal-bacterial complexes, pathogenic bacteria, plant growth-promoting bacteria, microbial communities.

INTRODUCTION

To date, the relations between plants and bacteria and those between plants and fungi have been studied in nuance. However, the interaction between bacteria and fungi has not been studied in detail yet. Meanwhile, both endobiotic and ectobiotic bacteria are spread as widely among fungi as among animals and plants. A group of scientists from the USA, Brazil and Switzerland tested collection of fungal isolates from various taxonomic groups. Bacteria were found in most of the fungal isolates.

Submitted: March 03, 2024 Revised: May 05, 2024 Accepted for Publication: May 25, 2024 * Corresponding Author: Email: chudinova_em@pfur.ru © 2017 Pak. J. Phytopathol. All rights reserved. Some strains had been preserved in the collection for many years, yet bacteria remained in them (Robinson e al., 2021). Bacteria can be attached to the surface of mycelium or live within it (Valdivia and Heitman, 2007). The role of the bacteria in the bacterial-fungal consortium is poorly understood and, apparently, can be different. Bacteria can be parasites, be neutral in relation to fungi or live in symbiosis with them (Bastías *et al.*, 2020). Of particular interest are fungal-bacterial-plants associations based on symbiotic relationships, since such a community of fungi and bacteria can enhance both positive and negative effects on the host plant.

A prime example of fungal-bacterial symbiosis is described in the article by Partida-Martinez and Hertweck (2005). *Burkholderia rhizoxinica,* endosymbiotic bacteria of *Rhizopus microspores,* are capable of producing rhizoxin, which is toxic and disrupts normal functioning of rice plant cells. Such weakened plants are infected with *R. microspores*, and rice seedling blight develops. *R. microsporus* strains without *B. rhizoxinica* are not capable of infecting rice plants. Some bacteria capable of stimulating chlamydospore formation in mycelial fungi (Venkatesh *et al.*, 2022). Under laboratory conditions, *Ralstonia solanacearum* caused chlamydospore formation in fungi species from various taxa (Spraker *et al.*, 2016). Chlamydospores are thick-walled and are resistant to drying and temperature changes. Bacteria can survive harsh environmental conditions in chlamydospores together with fungi.

Bacteria can help arbuscular fungi form mycorrhizae. A study by Zhang *et al.* (2024) showed the beneficial effects of combining *Devosia* sp. with mycorrhizal fungi on plant growth and health.

In some cases, there is a clear correlation between fungi species and endosymbiotic bacteria. For instance, *Burkholderiaceae* endofungal bacteria are widespread in *Rhizopus* fungi. The authors consider symbiosis to be the result of evolution and that bacteria are vertically transmitted (Okrasińska *et al.*, 2021).

Apparently, endobiotic bacteria are widespread among various fungi species. However, their species diversity, impact on fungi life and the colonized plants need further examination. The presence of pathogenic bacteria closely related to fungi should be taken into account when planning plant protection measures (Platonov *et al.*, 2024). Potatoes and tomatoes are valuable food crops. Quite often, a whole complex of pathogenic organisms can be found in the lesion of these plants, and in order to preserve the health of these plants, it is necessary to consider the development of diseases as a multifactorial process, taking into account the relationships between fungi and bacteria. This aim of our research was a study of the presence and diversity of bacteria in the cultures of plant pathogenic and saprotrophic fungi isolated from plants of the Solanaceae family - potato and tomato.

MATERIALS AND METHODS

Samples of diseased fruits of tomato, potato tubers, leaves, and stems were collected from the commercial fields, storage facilities, and small private gardens in different regions (Table 1 and Figure 1). All samples were surface sterilized with sodium hypochlorite (2% solution) to remove possible contamination. Tubers and fruits were sliced across the damaged areas with a sterile blade. A slice of living infected tissue near the necrosis was transferred on plates with potato dextrose agar (PDA) amended with antibiotic (benzylpenicillin sodium salt, 100 mg/L). Leaves after sterilization put in wet chambers at 24 ± 1°C. For isolation, fungal spores or hyphae were taken from leaf surface using a preparation needle under a binocular microscope (MBS10, Russia), and transferred to culture media (PDA) amended with antibiotic.

Figure 1. Location of collecting sites.

Fungal strains were kept in the medium with an antibiotic (Penicillin G sodium salt, 1,000 units/ml). Visually, all studied strains had no signs of bacterial contamination. Species of the studied strains were identified based on cultural and morphological characteristics, and sequences of specific parts of the genome.

The mycelium of filamentous fungi for DNA extraction was grown in a liquid pea medium (Elansky et al., 2022). After 5-7 days of incubation, the mycelium was separated from the liquid medium, dried on a filter paper, ground in a mortar with the addition of aluminum oxide, and the homogenized material was transferred into a 1.5 ml microtube. Subsequently, 800 µl of CTAB lysing buffer (100mM TRIS Ph 8.0; 1.4M NaCl, 20mM EDTA, CTAB solid 2% (w/v)) was added to the tube. The mixture was vortexed and then incubated for an hour in a water bath at +65°C. After incubation, 500 µL of chloroform was added, vortexed and centrifuged for 10 min at 13000 rpm. After centrifugation, the supernatant was taken and transferred to a clean microtube. At this stage, 400 µL of isopropanol + CH3COOK (1/10 vol, 5M, pH = 4.6) was added, gently mixed (by hand) and centrifuged for 10 min at the same speed. The supernatant was discarded, and the resulting pellet was washed with chilled 70% ethanol. It was centrifuged for 5 min at 13000 rpm, the alcohol was poured off, the procedure was repeated 3 times, the residual alcohol was removed with filter paper, and the precipitate was dried for 2-3 h. The pellet was then suspended in 50 µL of deionized water and stored at -20°C for future use.

For isolation of DNA from bacteria and yeasts, 3 mL of liquid culture, incubated for 18 h, was centrifuged at 5000 rpm for 5 min. The pellet was washed in 500 μ L of TE buffer. After centrifugation, the pellet was suspended in 800 μ L of CTAB buffer. Further, the procedure was carried out in the same

way as in the isolation of DNA of filamentous fungi.

PCR was conducted using a Biometra T1 amplifier (Biometra, Germany). For each sample, 0.5 µl of 100 mM forward and reverse primers, 0.5 µl of dNTP (10 mM each), 0.5 µl of DNA polymerase (5 units/µl), 2.5 µl of 10x PCR buffer were taken. DNA fragments ITS1-5,8S-ITS2 (primers ITS4 and ITS5, (White et al., 1990)) and tef1 (EF1 and EF2 (O'Donnell et al., 1998)) were amplified. To identify bacteria, PCR was conducted using bacterial primers for DNA fragments 16S rRNA (primers 27fc/519r-TTb) (Lane, 1991). The amplification program consisted of an initial denaturation step at 94°C for 1 minute, followed by 30 cycles of denaturation at 94°C for 30 seconds, primer annealing (at 52°C for ITS4/ITS5, 54°C for EF1/EF2, 51°C for 27fc/519r-TTb) for 30 seconds, and elongation at 72°C for 70 seconds. A final elongation step was performed at 72°C for 5 minutes. Each PCR experiment included both negative controls (Nucleic acid-free water) and positive controls (known DNA samples expected to yield an amplicon of a specific size). After the PCR reaction, the length and purity of the amplified DNA products were assessed using electrophoresis in a 1% agarose gel containing ethidium bromide ($0.5 \,\mu g/mL$). Once the electrophoresis was completed, a gel piece containing the single desired amplicon size was excised with a sterile scalpel and placed in a microtube. The extraction of DNA from the gel was performed according to the manufacturer's instructions specified in the CleanUp Standard gel kit (Evrogen Ltd, Russia). For DNA sequencing, the Sanger method was employed by the Evrogen Ltd company. The obtained DNA sequences were compared with existing sequences from the NCBI GenBank database. DNA sequence analysis was conducted using the MEGA 10 software for further investigation and identification of the isolated species.

Table 11 libe of failing a strains taken for analysis for the presence of bacteria					
Fungal name Strain		Host plant, organ	Year of isolation	Place of collection (location on the Figure 1)	*
Acrostalagmus luteoalbus	21МПТ11/1	Potato tuber	2021	Russia, Moscow region (3)	
Alternaria alternata	19GaPT2	Potato tuber	2019	Gambia (11)	
A. alternata	19GaPT3	Potato tuber	2019	Gambia (11)	
A. alternata	20UgLaPT1-1	Potato tuber	2020	Uganda (12)	
A. alternata	21VNII2	Potato leaf	2021	Russia, Moscow region (3)	
Alternaria solani	20UgLaPT2_2	Potato tuber	2020	Uganda (12)	
Aureobasidium pullulans	21KKtepl1	Potato plant	2021	Russia, Kostroma region (2)	
Bjerkandera adusta	18CT1	Tomato fruit	2018	Russia, Moscow region (3)	
Ceratobasidium sp. AG-K	P1	Potato stem	2019	Russia, Astrakhan region (7)	+
Chaetomium globosum	18KVTF3-1	Tomato fruit	2018	Russia, Krasnodar region (6)	
Cladosporium cladosporioides	19GaPT5	Potato tuber	2019	Gambia (11)	+
C. cladosporioides	20UgLaTF10	Tomato fruit	2020	Uganda (12)	

Table 1. List of fungal strains taken for analysis for the presence of bacteria

Clonostachys solani	21MKpKK1	Potato tuber	2021	Russia, Moscow region (3)	
C. solani	21МКрККЗ	Potato tuber	2021	Russia, Moscow region (3)	
Colletotrichum coccodes	C18U(G)PT4	Potato tuber	2018	Russia, Ussuri region (8)	
C. coccodes	C18TPS7	Potato stem	2018	Russia, Tatarstan (5)	
C. coccodes	Cc20UgKgPT1	Potato tuber	2020	Uganda (12)	
C. coccodes	Cc20UgLaPT1/1	Potato tuber	2020	Uganda (12)	
C. coccodes	Cc20UgKgPT 2	Potato tuber	2020	Uganda (12)	
Epicoccum nigrum	20UgLaTF 2/2	Tomato fruit	2020	Uganda (12)	
Fusarium avenaceum	23КамКК Ф1	Potato tuber	2022	Russia, Kamchatka region (10)	+
F. avenaceum	23КамКК 18\1	Potato tuber	2022	Russia, Kamchatka region (10)	+
F. equiseti	18KTF22-1	Tomato fruit	2018	Russia, Krasnodar region (6)	
F. equiseti	20AKTL2\3	Tomato leaf	2019	Russia, Astrakhan region (7)	
F. equiseti	20UgTF1	Tomato fruit	2020	Uganda (12)	+
F equiseti	200gTF1 20UgTF3	Tomato fruit	2020	Uganda (12)	+
F equiseti	200g115 2011øLaTF1	Tomato fruit	2020	Uganda (12)	+
F equiseti	200ghaTF1-1	Tomato fruit	2020	Uganda (12)	<u> </u>
F equiseti	200gLaTT1 1 20UgLaTF5-1	Tomato fruit	2020	Uganda (12)	+
F equiseti	200gda115 1 20 UgLaTE7	Tomato fruit	2020	Uganda (12)	,
<u> </u>	20 UgLaTF7	Tomato fruit	2020	Uganda (12)	+ +
F. equiseti	20 UgLaTF9	Dotato tubor	2020	Uganda (12)	Ŧ
F. equiseti	200gLdP11 2007200	Polato tuber	2020	Uganda (12)	
F. equiseti	2011200	Potato tuber	2020	Uganda (12)	
F. equiseti	20071211	Potato tuber	2020	Uganua (12)	
F. equiseti	2021242	Potato tuber	2020	Uganda (12)	+
F. graminearum	2021198	Potato tuber	2020	Uganda (12)	+
F. graminearum	200gLaPT2_1	Potato tuber	2020	Uganda (12)	
<u>F. merismoides</u>	22Кам_3\2	Potato tuber	2022	Russia, Kamchatka (10)	+
F. merkxianum	F20AKPS3	Potato stem	2019	Russia, Astrakhan region (7)	+
F. oxysporum	20MKKK4	Potato tuber	2020	Russia, Moscow region (3)	
F. oxysporum	20UgLaTF4	Tomato fruit	2020	Uganda (12)	+
F. oxysporum	20PT195	Potato tuber	2020	Uganda (12)	+
F. oxysporum	20PT201	Potato tuber	2020	Uganda (12)	+
F. oxysporum	20PT203	Potato tuber	2020	Uganda (12)	+
F. oxysporum	20PT205	Potato tuber	2020	Uganda (12)	+
F. oxysporum	20PT206	Potato tuber	2020	Uganda (12)	+
F. oxysporum	20PT217	Potato tuber	2020	Uganda (12)	+
F. oxysporum	20PT241	Potato tuber	2020	Uganda (12)	+
F. oxysporum	20UgKgPT1/3	Potato tuber	2020	Uganda (12)	
F. oxysporum	20UgKacPT15	Potato tuber	2020	Uganda (12)	
F. oxysporum	21KPS4Vo	Potato tuber	2021	Russia, Kostroma region (2)	+
F. oxysporum	21B1.1	Potato tuber	2021	Russia, Moscow region (3)	+
F. oxysporum	21B3b	Potato tuber	2021	Russia, Moscow region (3)	+
F. oxysporum	21AEPS1	Potato stem	2021	Russia, Arkhangelsk region (1)	
<i>F. sporotrichioides</i>	14MPT17AB	Potato tuber	2017	Russia, Moscow region (3)	
<i>Fusarium</i> sp.	19EPTvaz1	Potato tuber	2019	Russia, Saratov region (5)	
<i>F. sporotrichioides</i>	14MPT17AB	Potato tuber	2017	Russia, Moscow region (3)	
Fusarium sambucinum	17Mikofag	Potato tuber	2017	Russia Moscow region (3)	
F solani	2046605	Potato stem	2019	Russia Astrakhan region (7)	
<i>Esolani</i>	20MKKK1 3	Potato tuber	2020	Russia, Moscow region (3)	+
F solani	20/00/00/00	Potato tuber	2020	Russia Moscow region (3)	
F solani	2000000	Potato tuber	2020	Ilganda (12)	
F solani	2011204	Potato tuber	2020	Uganda (12)	_ر
<u> </u>	201 1177 21MVVV2	Potato tubor	2020	Diganua (12) Pussia Mascow ragion (2)	Ŧ
E torulogum	21MAA3	Potato tuber	2021	Dussia, Moscow region (3)	,
r. coruiosum	22NdM2\2	Potato tuber	2022	Russia, Kainchatka (10)	+
Geotricnum canaiaum	ZIMIIK	Potato tuber	2021	Kussia, Moscow region 131	

Helminthosporium solani	H17Ma(P)PT2	Potato tuber	2017	Russia, Magadan region (9)	
H. solani	H17Ma(S)PT7/1	Potato tuber	2017	Russia, Magadan region (9)	
H. solani	H18UKK4	Potato tuber	2018	Russia, Primorskiy region	
H. solani	H20UgKgPT3	Potato tuber	2020	Uganda (12)	
H. solani	H20UgKgPT8	Potato tuber	2020	Uganda (12)	
Ilyonectria crassa	17KSPT1	Potato tuber	2017	Russia, Moscow region (3)	+
Irpex lacteus	18KDTF6	Tomato fruit	2018	Russia, Krasnodar region	
Juxtiphoma eupyrena	17МаСКК1\4	Potato tuber	2017	Russia, Magadan region (9)	
J. eupyrena	17МаСКК1/8	Potato tuber	2017	Russia, Magadan region (9)	
J. eupyrena	17МаСКК4	Potato tuber	2017	Russia, Magadan region (9)	
J. eupyrena	17МаСКК6	Potato tuber	2017	Russia, Magadan region (9)	
Microdochium sp.	20PT213	Potato tuber	2020	Uganda (12)	
Orbilia oligospora	22Кам_3\1	Potato tuber	2022	Russia, Kamchatka region (10)	+
Plectosphaerella _cucumerina	21MKKK2	Potato tuber	2021	Russia, Moscow region (3)	+
Pyrenochaeta sp	18KPTFan2/1	Tomato fruit	2018	Russia, Kaluga region (4)	+
Remotididymella destructiva	20UgMbPT4	Potato tuber	2020	Uganda (12)	
Rhizoctonia solani	19Chash_bf	Potato tuber	2019	Russia, Moscow region (3)	+

* - the "+" sign indicates fungal strains in which it was possible to determine the species or genus of associated bacteria **RESULTS** oxysporum and Plectosphaerella cucumerina.

When PCR was carried out using bacterial primers for DNA extracted from fungi, the following problem appeared: PCR products of good quality, well detectable using electrophoresis, were obtained from only a half of studied isolates. However, even with such PCR products, it was possible to successfully determine the nucleic acid sequence not in all cases due to PCR product heterogeneity. Such heterogeneity occurs when the mycelium contains several species of bacteria at the same time, or if bacterial primers anneal a non-specific fragment of the fungal DNA. During DNA analysis of Acrostalagmus luteoalbus, Alternaria alternata, A. solani, Cladosporium cladosporioides, Colletotrichum coccodes, H. solani, Geotrichum candidum, Irpex lacteus, Juxtiphoma eupyrena, when PCR was conducted using bacterial primers, several amplicons of different sizes were produced. The PCR product based on bacterial primers was not synthesized for some fungal strains. The taxonomic affiliation of bacteria was identified for 30 fungi strains. The associated bacteria were of the following taxons: Achromobacter sp., Acinetobacter sp., Delftia sp., Enterobacter sp., Flavobacterium sp., Herbaspirillum sp., Klebsiella sp., Kosakonia spp., Lacrimispora sp., Lelliottia sp. Luteolibacter sp., Paenibacillus sp., Pantoea sp., Pseudomonas spp., Rahnella sp., and Stenotrophomonas sp. (Table 2 and Figure 2).

No correlation between bacterial and fungal species was revealed. *Pantoea* sp. was found both in *F*.

oxysporum and Plectosphaerella cucumerina. Stenotrophomonas sp. was identified in the strains of three different Fusarium species. In F. oxysporum strains, eight different bacterial taxons were identified, while in F. equiseti there were six different bacterial species (Table 2). Stenotrophomonas and Delftia bacteria registered in various fungal strains were identical based on the studied sequences. Pseudomonas bacteria were significantly different. Figure 2 shows that they were divided into three clades and are apparently of different species. Strains of Pantoea and Kosakonia were also genetically different.

DISCUSSION

Plants live in symbiosis with a large variety of microbes. These microbes play an important role in improving nutrient availability for a plant, protecting it from pathogens and increasing stress tolerance. Complex relations are also established between different microorganisms forming the plant's microbiome. Bacteria associated with fungi can promote plant infection, utilization of complex substrates by fungi, and have effects on plants by producing specific chemical compounds which are identical to plant hormones. At the same time, fungi promote survival and spread of associated bacteria.

The bacteria identified in fungi strains include those which are close to plant growth-promoting bacteria. It was shown that *Achromobacter spanius* IP23 promotes plant growth by producing the "growth hormone", indoleacetic acid (Santos and Rigobelo, 2021). Stenotrophomonas maltophilia SBP-9 improves wheat plant resistance to salt stress (Singh and Jha, 2017). *Klebsiella oxytoca* increases systemic resistance of potato and tobacco to PVY (Elsharkawy *et al.*, 2022). *Delftia* bacteria are well known as plant growthpromoting bacteria which also detoxify soil because they destroy some herbicides (Braña *et al.*, 2016). *Herbaspirillum* representatives also have growthpromoting properties (Monteiro *et al.*, 2012).

The trophic status of *Pseudomonas* bacteria differs. Some *Pseudomonas* bacteria associated with plants promote plant growth, suppressing pathogenic microorganisms, synthesizing plant hormones that Table 2 List of tosted fungal strains and bacteria found in t stimulate growth and improving plant resistance to diseases. Other representatives of this genus lead to the disease (Preston, 2004). One of the *Pseudomonas* bacteria identified by us (20UgLaTF5-1) was close to *P. oryzihabitans* (MN565981, figure 2). This bacterial species is known to infect rice (Hou *et al.*, 2020). Another strain of *P. oryzihabitans* (MW187499), infects melon (Li *et al.*, 2021). Based on the studied fragment of the 16S gene sequence, one of the identified bacteria (B21.B1.1) is similar to *Lelliottia amnigena* (OK447935), which causes soft rot of potato tubers (Osei *et al.*, 2022). In some cases, the disease of potato tubers could be related to the presence of the pathogenic bacterium in the fungus.

Table 2. List of tested fungal strains and bacteria found in them.					
Name of the	Species name	NCBI accession	Name of the	Species name	NCBI accession
fungus strain	of the fungus	number	bacteria strain	of the bacteria	number
P1	Ceratobasidium sp.	ITS: MW453064	B20AKKC1	<i>Delftia</i> sp.	OR381573
19GaPT5	Cladosporium cladosporioides	ITS: 0R529207	B19GaPT5	Paenibacillus sp.	OR381570
17KSPT1	Ilyonectria crassa	ITS: MH818326	B17KSPT1	Enterobacter sp.	OR557619
23Kamf1	Fusarium avenaceum	ITS: 0R591464	B23Kamf1	Stenotrophomonas sp	OR591467
23Kam18_1	F. avenaceum	ITS: 0R591465	B23Kam18_1	Rahnella sp.	OR591490
20UgTF1	F. equiseti	ITS: 0M421611	B20UgTF1	Pseudomonas sp.	OR470472
20UgTF3	F. equiseti	ITS: OM421613 TEF: OM362475	B20UgTF3	Klebsiella sp.	OR462712
20UgLaTF1	F. equiseti	ITS:OM421616 TEF OM362479:	B20UgLaTF1	Pseudomonas sp.	OR462688
20UgTF5-1	F.equiseti	ITS:OM421614 TEF: OM362476	20UgLaTF5-1	Pseudomonas sp.	OR462691
20UgLaTF7	F. equiseti	ITS:OM421617 TEF: OM362477	B20UgLaTF7	Pantoea sp.	OR462708
20UgLaTF9	F. equiseti	TEF: 0M362480	B20UgLaTF9	Stenotrophomonas sp.	OR462710
20UgPT198	F. graminearum	ITS: 0L364746	B20PT198	Stenotrophomonas sp.	OR460081
22KamPT3_2	F. merismoides	ITS: 0R533484	В22Кам_3_2	Luteolibacter sp.	OR462725
F20AKPS3	F. merkxianum	TEF: 0N409888	B20AKKC3	Stenotrophomonas sp.	OR459867
20UgLaTF4	F. oxysporum	ITS: 0L372284	B20UgLaTF4	Kosakonia sp.	OL762470
20UgPT201	F. oxysporum	TEF: 0M649882	B20PT201	Achromobacter sp.	OR460082
20UgPT203	F. oxysporum	ITS: 0L372286	B20PT203	Stenotrophomonas sp.	OR460094
20UgPT205	F. oxysporum	TEF: 0M649887	B20PT205	Stenotrophomonas sp.	OR460095
20UgPT206	F. oxysporum	TEF: 0M649873	B20PT206	<i>Delftia</i> sp.	OR460096
20UgPT217	F. oxysporum	ITS: 0L372287 TEF: 0M649883	B20PT217	Stenotrophomonas sp.	OR460097
20UgPT241	F. oxysporum	ITS: 0L372292	B20PT241	Kosakonia sp.	OR460099
20UgPT242	F. oxysporum	ITS: 0M649874	B20PT242	Pantoea sp.	OR460188
21KPS4Vo	F. oxysporum	ITS: OR528743	B21KPS4Vo	Delftia sp.	OR462718
21MPTw1	F. oxysporum	ITS: 0R528742	B21B1.1	Lelliottia sp.	OR462719
21MPTw3b	F. oxysporum	ITS: OR528741	B21B3b	Pseudomonas sp.	OR462716
22Kam2-2	F. torulosum	ITS: 0R555824	B22Kam2-2	Flavobacterium sp	OR557578
22KamPT3_1	Orbilia oligospora	ITS: 0R531681	В22Кам_3∖1	Lacrimispora sp.	OR462720
21MKKK2	Plectosphaerella cucumerina	ITS: 0R529437	B21MKKK2	Pantoea sp.	OR462717
18KPTFan2/1	Pyrenochaeta sp	ITS: 0R528638	B18KPTFan2_1	Herbaspirillum sp	OR381483
19Chash_bf	Rhizoctonia solani	ITS: 0R531680	B19Chash_bf	Achromobacter sp.	OR459849

Figure 2. Phylogenetic tree inferred from maximum-likelihood analysis of the 16S gene region alignment. Bootstrap 1000 replicates. The figure also shows reference sequences.

Different strains belonging to the same bacterial species may have different degrees of pathogenicity or be nonpathogenic to the host plant. For example, Kosakonia *cowanii* strains are known to be pathogenic for soybean plants (Krawczyk and Borodynko-Filas, 2020). Another strain of K. cowanii was found to infect foxtail millet (Setaria italica) (Han et al., 2023). At the same time, a nonpathogenic strain of K. cowanii was also described. Wholegenome sequencing of this strain revealed the absence of several virulence-related genes (Espinosa et al., 2023). The Pantoea agglomerans strain (HM854282) has been described as a rice pathogen (Lee et al., 2010), but another strain of this species, YS19, was non-pathogenic and had growth-promoting effects (Feng et al., 2006). Thus, to study the properties of bacteria and their role in the fungus-bacterium-plant system, it is necessary to isolate axenic bacterial cultures.

The research showed that fungal-bacterial complexes are very strong. Bacteria were found even during the analysis of mycelium of the strains kept in the collection for several years which were periodically sterilized by antibiotics. According to pertinent literature, bacteria can play versatile roles. Associations of growth-promoting bacteria with non-pathogenic fungi are of interest for the development of biological drugs that stimulate plant growth. Many bacteria have been described that have a high potential for accelerating the growth and development of plants, however, due to the inability to form spores, such bacteria do not tolerate unfavorable environmental conditions. Combining such bacteria with non-pathogenic fungi will increase their survival; the resulting fungal-bacterial associations can be used to create growth-stimulating biological products with a long shelf life.

When protective measures are planned, it must be taken into account, that such measures are to cover not only fungi, but also fungal-bacterial complexes which may include plant pathogenic bacteria.

CONCLUSION

Many fungi are closely related to bacteria. Bacteria can spread and survive unfavorable conditions with the help of fungi.

Fungi can be in close association with phytopathogenic bacteria; such fungal-bacterial complexes can have a destructive effect on plants.

Based on fungi associated with growth-stimulating bacteria, highly effective biological products with a long shelf life, resistant to environmental influences, can be created.

FUNDING SOURCES

This research was supported by the Russian Science Foundation (grant 23-26-00069).

REFERENCE

- Bastías, D. A., L. J. Johnson, S. D. Card. 2020. Symbiotic bacteria of plant-associated fungi: friends or foes? Current Opinion in Plant Biology, 56: 1-8.
- Braña, V., C. Cagide and M. A. Morel. 2016. The sustainable use of *Delftia* in agriculture, bioremediation, and bioproducts synthesis. In: S. Castro-Sowinski, (eds.), Microbial models: from environmental to industrial sustainability. SpringerLink, USA. pp. 227-247.
- Elansky, S. N., E. M. Chudinova, A. S. Elansky, M. O. Kah, D. A. Sandzhieva, B. A. Mukabenova and A. G. Dedov. 2022. Microorganisms in spent water-miscible metalworking fluids as a resource of strains for their disposal. Journal of Cleaner Production, 350: 131438.
- Elsharkawy, M. M., F. O. Alotibi, A. A. Al-Askar, M. Adnan, M. Kamran, A. Abdelkhalek, S. I. Behiry, M. H. Saleem, A. A. Ahmad and A. A. Khedr. 2022. Systemic resistance induction of potato and tobacco plants against potato virus Y by *Klebsiella oxytoca*. Life, 12: 1521.
- Espinosa, J. G., Y. F. H. Gómez, Y. J. Martínez, F. J. F. Gallardo, J.
 R. P. Aguilar, M. Á. R. López, J. L. A. Gómez, C. S.
 Gutierrez, J. A. R. Morales, M. C. G. Gutiérrez, A. A.
 Reyes, E. Á. Hidalgo, J. N. Ramírez, J. L. H. Flores and J.
 C. Guillén. 2023. *Kosakonia cowanii* Ch1 isolated from Mexican chili powder reveals growth inhibition of phytopathogenic fungi. Microorganisms, 11(7): 1758.
- Feng, Y., D. Shen and W. Song. 2006. Rice endophyte *Pantoea agglomerans YS*19 promotes host plant growth and affects allocations of host photosynthates. Journal of Applied Microbiology, 100: 938-945.
- Han, Y., X. Gao, G. Huangm, Y. Chang, H. Han, J. Zhu and B. Zhang. 2023. *Kosakonia cowanii*, a new bacterial pathogen affecting foxtail millet (*Setaria italica* [L.] P. Beauv.) in China. Microbial Pathogenesis, 181: 106201.
- Hou, Y., Y. Zhang, L. Yu, X. Ding, L. Liu, L. Wang and S. Huang. 2020. First report of *Pseudomonas oryzihabitans* causing rice panicle blight and grain discoloration in China. Plant disease, 104(11): 3055.
- Krawczyk, K. and N. Borodynko-Filas. 2020. *Kosakonia cowanii* as the new bacterial pathogen affecting soybean (*glycine max* willd.). European Journal of Plant Pathology, 157: 173-183.
- Lane, D. J. 1991. 16S/23S rRNA sequencing. In: E. Stackebrandt and M. Goodfellow, (eds.), Nucleic acid

techniques in bacterial systematics. John Wiley and Sons, New York. pp. 115-175.

- Lee, H. B., J. P. Hong and S. B. Kim. 2010. First report of leaf blight caused by *Pantoea agglomerans* on rice in Korea. Plant Disease, 94: 1372.
- Li, J., G. Zhou, T. Wang, T. Lin, Y. Wang, P. Zhu, L. Xu and G. Ma. 2021. First report of *Pseudomonas oryzihabitans* causing stem and leaf rot on muskmelon in China. Plant Disease. 105(9): 2713.
- Monteiro, R. A., E. Balsanelli, R. Wassem, A. M. Marin, L. C. C.
 Brusamarello-Santos, M. A. Schmidt, M. Z. Tadra-Sfeir,
 V. C. S. Pankievicz, L. M. Cruz, L. S. Chubatsu, F. O.
 Pedrosa and E. M. Souza. 2012. *Herbaspirillum*-plant
 interactions: microscopical, histological and
 molecular aspects. Plant and Soil, 356: 175-196.
- O'Donnell, K., H. C. Kistler, E. Cigelnik and R. C. Ploetz. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. In: Proceedings of the National Academy of Sciences, 95: 2044-2049.
- Okrasińska, A., A. Bokus, K. Duk, A. Gęsiorska, B. Sokołowska, A. Miłobędzka, M. Wrzosek and J. Pawłowska. 2021. New endohyphal relationships between *Mucoromycota* and *Burkholderiaceae* representatives. Applied and Environmental Microbiology, 87(7): e02707-20.
- Osei, R., C. Yang, L. Cui, T. Ma, Z. Li and S. Boamah. 2022. Isolation, identification, and pathogenicity of *Lelliottia amnigena* causing soft rot of potato tuber in China. Microbial Pathogenesis, 164: 105441.
- Partida-Martinez, L. and C. Hertweck. 2005. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature, 437: 884-888.
- Platonov, V. A., E. M. Chudinova and S. N. Elansky. 2024. Adaptation of plant protection technology considering fungal-bacterial associations. RUDN Journal of Agronomy and Animal Industries, 19(1): 122-127.
- Preston, G. M. 2004. Plant perceptions of plant growthpromoting *Pseudomonas*. Biological Sciences, 359:

907-918.

- Robinson, A. J., G. L. House, D. P. Morales, J. M. Kelliher, V. Gallegos-Graves, E. S. LeBrun, K. W. Davenport, F. Palmieri, A. Lohberger, D. Bregnard, A. Estoppey, M. Buffi, C. Paul, T. Junier, V. Hervé, G. Cailleau, S. Lupini, H. N. Nguyen, A. O. Zheng, L. J. Gimenes, S. Bindschedller, D. F. Rodrigues, J. H. Werner, J. D. Young, P. Junier and P. S. G. Chain. 2021. Widespread bacterial diversity within the bacteriome of fungi. Communications Biology, 4(1): 1168.
- Santos, R. M. and E. C. Rigobelo. 2021. Growth-promoting potential of *Rhizobacteria* isolated from sugarcane. Frontiers in Sustainable Food Systems, 5: 596269.
- Singh, R. P. and P. N. Jha. 2017. The PGPR *Stenotrophomonas maltophilia* SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology, 8: 1945.
- Spraker, J. E., L. M. Sanchez, T. M. Lowe, P. C. Dorrestein, N. P. Keller. 2016. *Ralstonia solanacearum* lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. The ISME Journal, 10: 2317-2330.
- Valdivia, R. H. and J. Heitman. 2007. Endosymbiosis: the evil within. Current Biology, 17(11): 408-410.
- Venkatesh, N., C. Greco, M. T. Drott, M. J. Koss, I. Ludwikoski, N. M. Keller and N. P. Keller. 2022. Bacterial hitchhikers derive benefits from fungal housing. Current Biology, 32(7):1523-1533.
- White, T. J., T. Bruns, S. Lee and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, (eds.), PCR protocols: a guide to methods and applications, Academic Press, New York, USA. pp. 315-322.
- Zhang, C., M. G. A. V. D. Heijden, B. K. Dodds, T. B. Nguyen, J. Spooren, A. Valzano-Held, M. Cosme and R. L. Berendsen. 2024. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome, 12:313.

P		
Contribution of Authors:		
Vladislav A. Platonov	:	All authors contributed equally in conducting research and writing, editing this
Sergey N. Elansky	:	manuscript
Elena M.Chudinova	:	