

Official publication of Pakistan Phytopathological Society

Pakistan Journal of Phytopathology

ISSN: 1019-763X (Print), 2305-0284 (Online) http://www.pakps.com

S SORGHUM STRAW ENRICHED COTTON WASTE GROWING SUBSTRATE MODULATES GROWTH, YIELD AND NUTRITIONAL PROFILE OF OYESTER MUSHROOM (*PLEUROTUS SAJOR-CAJU*)

^aMuhammad M. Jahangir*, ^bGhufrana Samin, ^cNasir A. Khan, ^cImran U. Haq, ^aZubair Aslam, ^aMuhammad Amjad, ^akhurram Ziaf, ^aRashad W.K. Qadri, ^dImran Khan,

^a Institute of Horticultural Sciences, University of Agriculture Faisalabad, Pakistan.
^b University of Engineering and Technology (Lahore) Faisalabad Campus, Faisalabad, Pakistan.
^c Department of Plant Pathology, University of Agriculture Faisalabad, Pakistan.
^d Department of Agronomy, University of Agriculture, Faisalabad, Pakistan.

A B S T R A C T

A study was conducted to evaluate growth, yield and biochemical response of *Pleurotus Sajor-Caju* mushroom grown on sorghum straw enriched cotton waste growing substrate in Medicinal and Mushroom Lab, Institute of Horticultural Sciences (IHS), University of Agriculture, Faisalabad. Two substrates (cotton waste and sorghum straw) were used alone and with different combinations. Experiments consisted of five treatments T_0 (100% Cotton Waste), T_1 (100% Sorghum Straw), T_2 (75% Sorghum Straw + 25% Cotton Waste), T_3 (50% Sorghum Straw + 50% Cotton Waste) and T_4 (25% Sorghum Straw + 75% Cotton Waste). Data concerning time taken for spawn run initiation, mycelial growth completion, pinheads initiation, total number of pinheads, time required to harvest 1st, 2nd and 3rd flush harvested, total yield, pH, total soluble solids, acidity, ascorbic acid contents, total nitrogen, phosphorus, potassium contents, reducing sugars, non-reducing sugars and total sugars was recorded. T_0 (100% cotton waste) performed considerably well followed by T₄ (75% cotton waste and 25% sorghum straw) in relation to different growth, yield and bio chemical attributes.

Keywords: sorghum straw, mushroom flush, biochemical and nutritional quality, cotton waste.

INTRODUCTION

Due to its unique flavour and taste the ovster mushroom, Pleurotus sajor-caju isregarded as a delicacy in oriental cuisine. Oyster mushroom, Pleurotus sajor-caju is widely cultivated and most popular in various areas of the world like China, Korea, Japan, India, Thailand, Malaysia and Pakistan etc. Oyster mushroom (Pleurotus sajor*caju*) is an important source of protein, carbohydrate, crude fat, ash, crude fiber, calcium, iron, magnasium, phenols and flavonoids and is known to possess free radical scavenging potential and antibacterial activities due to presence of certain compounds like β - Sistosterol, Cholestanol, 1,5-Dibenzoylnaphthalene and 1,2-Benzenedicarboxylic acid etc. and characteristic flavor component of mushroom i.e. 1-Octen-3-ol. (Gogavekar et

* Corresponding Author:

Email: *muzammil_jahangir@hotmail.com

© 2015 Pak. J. Phytopathol. All rights reserved.

al.,2014) and contains low phytic acid and oxalate contents (Goyal et al., 2006). oyster mushroom *(Pleurotus sajor-caju)* is also regarded as an enriched source of nutritionally useful essential amino acids such as leucine methionine and cysteine (Oyetayo et al., 2007).

Now a days in Pakistan oyster mushroom (*Pleurotus sajor-caju*) cultivation is becoming popular due to better market prices. Cultivation of oyster mushroom (*Pleurotus sajor-caju*)in Pakistan is usually carried out on cottonwaste which is available in pakistan only in summer months intradational cotton ginning period. However, in Pakistan in different mushroom growing regions autumn and winter months are natural fruiting period for oyster mushroom (*Pleurotus sajor-caju*) when the temperature is in between 15-25°C (Kashif et al., 2013). But at that time there is shortage of cotton waste in these mushroom growing areas. Hence, it is necessary

to look for alternative growing substrates for oyster mushroom (*Pleurotus sajor-caju*) cultivation so that year round mushroom (Pleurotus oyster sajor-caju) production can be ensured. Dry sorghum straw is readily available in Pakistan as it is commonly used as fodder for animals and can be a viable option for oyster mushroom (Pleurotus sajor-caju) production. To the best of our knowledge scanting information is available regarding use of sorghum straw enriched cotton waste for the cultivation of oyster mushroom (Pleurotus sajorcaju). So, the objective of this study was to investigate the possibility of growing oyster mushroom (Pleurotus sajor-caju) on sorghum straw enriched cotton waste and to explore growth, yield and nutritional quality response on cotton waste, sorghum straw and their various combinations.

METERIALS AND METHODS

Present study was conducted at Medicinal and Mushroom Lab, Institute of Horticultural Sciences, University of Agriculture, Faisalabad during 2013-2014. For production of oyster mushroom (*Pleurotus sajorcaju*) standard bag cultivation technique for mushroom production was adopted for cultivation of *Pleurotus sajor-caju* on cotton waste, sorghum straw and their various combinations. Experiment consisted of following treatments and each treatment was replicated five times. T_0 = Cotton waste (100%)

 $T_1 = \text{Sorghum Straw} (100\%)$

 $T_1 = 501 \text{ gmm} 501 \text{ aw} (10070)$

 T_2 = Sorghum Straw (75%) + Cotton Waste (25%)

 T_3 = Sorghum Straw (50%) + Cotton Waste (50%)

 T_4 = Sorghum Straw (25%) + Cotton Waste (75%)

Various parameters such as time taken for initiation of spawn run (days), time taken for completion of mycelial growth (days), time taken for initiation of pinhead formation (days), total number of pinheads, time taken Table1 Effect of cotton waste sorghum straw and their co to harvest 1st flush (days), time taken to harvest 2ndflush (days), time taken to harvest 3rdflush (days), fresh weight of 1st flush harvested (g), fresh weight of 2nd flush harvested (g), fresh weight of 3rdflush harvested (g), Totalyield (g), pH, Total soluble solids (°Brix), acidity (%) of mushroom (Hortwitz, 1960), ascorbic acid of mushroom (mg/100ml) (Ruck,1969), reducing sugars, non-reducing sugars, total sugars (Hortwitz, 1960.), notrogen contents of mushrooms, phosphorus contents of mushrooms and potassium contents of mushrooms (Chapman and Parker. 1961) were studied.

Statistical Analysis Completely randomized design (CRD) was used in this study. The data collected was analyzed statistically usingLSD test at 5% probability level that provided practical and comprehensive comparison of the treatments for their effectiveness (Steel and Torrie, 1984).

RESULTS

Table 1 shows time taken for spawn run initiation. The minimum time for initiation of spawn run was taken by T_0 (1.00±.01days) followed by T_4 (1.66±.34 days), T_3 $(2.00\pm.01 \text{ days})$, T₂ $(2.00\pm.01)$ and T₁ $(2.67\pm.33 \text{ days})$ respectively. In case of time taken for completion of mycelial growth T_0 took minimum time (21.66±.89 days) followed by T₄ (30.00±1.53 days), T₃ (37.00±.57 days), T₂ (45.33 \pm .88 days) and T₁ (50.00 \pm .57 days) respectively. As for as time taken for Initiation of pinheads is concerned T_0 took minimum time (4.34±.33 days) for pinheads initiation followed by T_2 (5.66±.32 days), T_1 $(6.00\pm.02 \text{ days})$ T₄ $(6.00\pm.03 \text{ days})$ and T₃ $(6.40\pm.01$ days) respectively. In case of total number of pinheads, maximum number of pinheads was observed in case of T_0 (88.33±4.40) followed by T_4 (78.33±4.41), T_3 (61.67 ± 1.66) , T₂ (50.00 \pm 2.88) and T₁ (26.66 \pm 1.67) respectively.

	, 0		0 1	, ,
Treatment	Time for initiation of	Time for Completion of	Time for Initiation of	No. of pinheads
meatiment	spawn run (days)	mycelial growth (days)	pinheads (days)	No. of plilleaus
Т0	1.00±.01c	21.66±.89e	4.34±.33b	88.33±4.40a
T1	2.67±.33a	50.00±.57a	6.00±.02a	26.66±1.67d
T2	2.00±.01b	45.33±.88b	5.66±.32c	50.00±2.88c
Т3	2.00±.01b	37.00±.57c	6.40±.01a	61.67±1.66b
T4	1.66±.34b	30.00±1.53d	6.00±.03a	78.33±4.41a
LSD Value	0.6643	3.0078	0.6643	10.238

Table1. Effect of cotton waste, sorghum straw and their combination on growth parameters of *Pleurotus sajor-caju*.

Figures not sharing the same letters differ significantly at P = 0.05.

Table 2 shows data concerning time taken to harvest 1st, 2nd and 3rd flush. T0took minimum time (27.67±.88 days) for harvesting of1st flush followed by T4

(34.00 \pm 1.15 days), T3 (40.33 \pm .33days), T2 (45.66 \pm 3.66 days) and T1 (50.00 \pm 2.88 days) respectively. While, for harvesting of 2nd flush T0 took minimum time

(35.34±1.85 days) followed by T4 (40.66±.32 days), T3 (44.34±.33 days), T2 (50.33±1.76 days) and T1 (56.00±2.31 days) respectively. Similarly for harvesting of Table 2. Effect of cotton waste, sorghum straw and their combination on harvesting pattern of *Pleurotus saior-caiu*

3rd flushT0 took minimum time (43.66±1.21days) followed by T4 (48.33b±.88days), T3 (51.00±.57days), T2 (60.33±3.28days) and T1 (62.00±1.53days) respectively.

Table 2. Effect of cotton waste, sorghum straw and then combination on narvesting pattern of <i>Fieurotus sujor-euju</i> .				
Treatment	Time toharvest 1 st flush (days)	Time to harvest 2 nd flush (days)	Time to harvest 3 rd flush (days)	
Т0	27.67±.88d	35.34±1.85d	43.66±1.21c	
T1	50.00±2.88a	56.00±2.31a	62.00±1.53a	
T2	45.66±3.66ab	50.33±1.76b	60.33±3.28a	
Т3	40.33±.33bc	44.34±.33c	51.00±.57b	
T4	34.00±1.15cd	40.66±.32c	48.33b±.88c	
LSD Value	6.9036	4.9042	12.401	

Figures not sharing the same letters differ significantly at P = 0.05. Table 3 shows data concerning fresh weight of 1st, 2nd and 3rd flush harvested and total yield of mushrooms. T_0 yielded best (80.00±2.87g) followed by T_4 (63.67±5.84g), T₃ (48.33±6.01g), T₂ (41.66±6.66g) and T₁ (18.33±1.76g) respectively in case of fresh weight of 1st flush harvested. Similarly, in case of fresh weight of 2^{nd} flush harvested T_0 yielded best (51.66±5.81g) followed by T_4 (38.67±2.96g), T_3 (34.00±6.66g), T_2

 $(23.00\pm2.55g)$ and T₁ $(23.00\pm.57g)$ respectively. While, in case of fresh weight of 3^{rd} flush harvested T_0 yielded best (36.00±2.31 g) followed by T₄ (27.67±.88g), T₃ $(17.00\pm1.15g)$, T₂ $(15.00\pm.57g)$ and T₁ $(10.33\pm.88g)$ respectively. As for astotal yield is concerned, T₀yielded best (167.67 \pm 5.61g) followed by T₄ (130.00 \pm 5.19g), T₃ (99.34±.33g), T₂ (79.66±4.25g) and T₁ (42.67±.88g) respectively.

Table 3. Effect of cotton waste, sorghum straw and their combination on fresh weight of 1st, 2nd and 3rd flush and total yield of Pleurotus sajor-caju.

Treatment	Fresh weight of 1 st	Fresh weight of 2 nd	Fresh weight of 3 rd	Total yield
	flush (g)	flush (g)	flush (g)	(g)
Т0	80.00±2.87a	51.66±5.81a	36.00±2.31a	167.67±5.61a
T1	18.33±1.76d	23.00±.57cd	10.33±.88d	42.67±.88e
T2	41.66±6.66c	23.00±2.55cd	15.00±.57c	79.66±4.25d
Т3	48.33±6.01bc	34.00±6.66bc	17.00±1.15c	99.34±.33c
T4	63.67±5.84b	38.67±2.96ab	27.67±.88b	130.00±5.19b
LSD Value	15.825	13.630	4.1219	12.401

Figures not sharing the same letters differ significantly at P = 0.05. Table 4 shows data regarding pH of mushroom, total soluble solids of mushroom (°Brix), acidity of mushroom (%) and ascorbic acid contents of mushroom (mg/100ml). Highest pH value was observed in case of $T_2(7.87\pm.09)$ followed by T_1 $(7.84\pm.03)$, T₃ $(7.60\pm.05)$, T₀ $(7.53\pm.03)$ and T₄ $(7.50\pm.01)$ respectively. In case of total soluble solids of mushroom

maximum total soluble solids were observed in case of T₀ $(4.00\pm.01)$ and $T_4(3.56\pm.23)$ followed by $T_2(3.20\pm.30)$ and T_3 $(3.10\pm.05)$ and T₁ $(3.04\pm.34)$ respectively. In case of acidity of mushroom maximum acidity of mushroom was observed in case of T_0 (0.05±.04) followed by T_4 (0.04±.04) T_3 (0.03±.02) and T_2 (0.03±.01) and T_1 (0.03±.01) respectively. Table 4. Effect of cotton waste, sorghum straw and their combination on biochemical parameters of Pleurotus sajor-caju.

Treatment	pH of mushroom	Total soluble solids of mushroom (°Brix)	Acidity of mushroom (%)	Ascorbic acid of mushroom (mg/100ml)
Т0	7.53±.03b	4.00±.01a	0.05±.04a	18±.03a
T1	7.84±.03a	3.04±.34b	0.03±.01b	11±1.41b
T2	7.87±.09a	3.20±.30b	0.03±.01b	12±.01b
Т3	7.60±.05b	3.10±.05b	0.03±.02b	14±1.15b
T4	7.50±.01b	3.56±.23ab	0.04±.04ab	14±3.60ab
LSD Value	0.1649	0.7790	0.0102	4.23

Figures not sharing the same letters differ significantly at P = 0.05.

In case of ascorbic acid contents of mushroom, maximum ascorbic acid contents were observed in case of T_0 (18±.03mg/100ml) followed by T_4 (14±3.60mg/100ml), T_3 (14±1.15mg/100ml), T_2 (12±.01mg/100ml) and T_1 (11±1.41mg/100ml) respectively.

Table 5 shows data concerning nitrogen, phosphorus and potassium contents of mushroom (%). As for as nitrogen contents of mushroom (%) are concerned, maximum nitrogen contents were observed in case of T_0 (0.71±.02%) followed by T_4 (0.67±0.15%), T_3

(0.63±.06%), T₂ (0.60±.06%) and T₁ (0.50±.01%) respectively. While in case of phosphorus contents of mushroom (%), maximum phosphorus contents were observed in case of T₀ (0.46±.01%) followed by T₄ (0.45±.07%),T₃ (0.37±.01%), T₂ (0.24±.06%) and T₁ (0.24±.03%) respectively. Similarly, in case of potassium contents of mushroom maximum potassium contents were observed in case of T₀ (0.77±.03%) followed by T₄ (0.73±.03%),T₃ (0.63±.02%), T₂ (0.58±.01%) and T₁ (0.57±.02%) respectively.

Table no 5. Effect of cotton waste, sorghum straw and their combination on nitrogen, phosphorus and potassium contents of *Pleurotus sajor-caju*.

Treatment	Nitrogen contents of mushroom (%)	Phosphorus contents of mushroom (%)	Potassium contents of mushroom (%)
Т0	0.71±.02a	0.46±.01a	0.77±.03a
T1	0.50±.01b	0.24±.03c	0.57±.02c
T2	0.60±.06ab	0.24±.06c	0.58±.01c
Т3	0.63±.06a	0.37±.01b	0.63±.02b
T4	0.67±0.15a	0.45±.07a	0.73±.03a
LSD Value	0.1276	0.0286	0.0477

Figures not sharing the same letters differ significantly at P = 0.05. Table 6 shows data related to reducing sugars, nonreducing sugars and total sugar contents of mushroom (%). by T₄ Maximum reducing sugars contents were observed in case (6.01 of T₀ (3.95±.04%) followed by T₄ (3.94±.04%), T₃ conte (3.30±.10%), T₂ (3.06±.07%) and T₁ (3.06±.06%) were respectively. Similarly In case of non-reducing sugars (10.6 contents of mushroom (%), maximum non reducing sugars (9.41 Table 6. Effect of cotton waste, sorghum straw and their combination

contents were observed in case of T_0 (7.80±.26%) followed by T_4 (7.01±.50%), T_3 (6.33±.16%), T_1 (6.07±.06%) and T_2 (6.01±.01%) respectively. Similarly in case of total sugars contents of mushroom (%), maximum total sugars contents were observed in case of T_4 (10.96±.47%) followed by T_0 (10.63±.37%), T_3 (10.26±.15%), T_1 (9.74±.32%) and T_2 (9.41±.49%) respectively.

Table 6. Effect of cotton waste, sorghum straw and their combination on reducing sugars, non-reducing sugars and total sugars of *Pleurotus sajor-caju*.

0	5 5		
Treatment	Reducing sugars of	Non reducing sugars of	Total sugars of
	mushroom (%)	mushroom (%)	mushroom (%)
Т0	3.95±.04a	7.80±.26a	10.63±.37ab
T1	3.06±.06c	6.07±.06c	9.74±.32bc
T2	3.06±.07c	6.01±.01c	9.41±.49c
Т3	3.30±.10b	6.33±.16bc	10.26±.15abc
T4	3.94±.04a	7.01±.50ab	10.96±.47a
LSD Value	0.2076	0.8381	1.2038

Figures not sharing the same letters differ significantly at P = 0.05.

DISCUSSION

Button mushroom (*Agaricus bisporus*), shiitake mushrooms (*Lentinus edodes*) and the oyster mushroom, (*Pleurotus ostreatus* and *Pleurotus sajor-caju*) consitute important components of globally expanding mushroom industry (Suguimoto et al., 2001). Production of these speciality mushrooms constitutes major mushroom

industry in south east Asian countries and elseware in the world. Cultivation of *Pleurotus spp.* especially *Pleurotus sajor-caju* has been stimilated in different asian countries due to easy availability of lignocellulosic raw materials (Sangwan and Saini, 1995). Time taken for initiation of spawn run, completion of mycelial growth and initiation of pinheads was lower with maximum total number of pinheads formation in case of cotton waste as compared to sorghum straw and its various amendments. This is understandable due to complete, faster and heavy colonization of cotton waste substrate forming a compact white mass of mycelium as compared to other substrates. Our findings are in agreement with the studies conducted by Khan et al., 2009. who reported better performance of Pleurotus species on cotton waste as compared to other mushroom growing substrates. The variation in above mentioned parameters may be attributed to variation in chemical and lignocellulosic composition of substrates (Igbal et al., 2005). As for as behaviour of mushroom harvesting pattern is concerned our results are supported by the findings of Dundar and Yildiz. 2009 who reported similar behaviour of mushroom harvesting pattern in their study. Better total yield obtained by using cotton waste may be attributed to presence of large quantity of cellulose and hemicellulose (Khan et al., 2010). Gradual decrease in yield was observed from 1st flush to 3rd flush in case of all treatments which might be attributed to gradual decrease in nitrogen contents of substrates with passage of time (Mandeel et al., 2005). pH, total soluble solids, acidity and ascorbic acid contents are important indicators of mushroom quality (Eissa, 2008). Phosphorus, potassium and sodium are some important minerals present in mushrooms and constitute major part of total minerals present in mushrooms (Chang and Miles, 1989). As for as reducing sugars, non-reducing sugars and total sugars of mushroom are concerned, they function to provide support and expansion of the fruit body of mushrooms and determine nutritional quality of mushrooms (Barros et al., 2007). Variation in reducing sugars, non-reducing sugars and total sugars of Pleurotus Sajor-Caju mushroom can be attributed to variety of substrates used as substrates normally affect fungal nutritional composition (Sturion and Oetterer 1995).

CONCLUSIONS

Pleurotus Sajor-Caju mushroom performed best when grown on T_0 (cotton waste 100%) and T_4 (75% cotton waste + 25% sorghum straw) as for as different growth, yield and bio chemical parameters are concerned. We are of the openion that cotton waste should be first preference for cultivation of *Pleurotus Sajor-Caju* mushroom. However, in case of limited availability of cotton waste, production of *Pleurotus Sajor-Caju* mushroom can be carried out on cotton waste amended with sorghum straw generally in those areas where there is shortage of cotton waste.

REFRENCES

- Barros, L., P. Baptista, D.M. Correia, J.S. Morais and I.C.F.R. Ferreira. 2007. Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J. Agric. Food Chem. 55: 4781–4788.
- Chang, S. T., and P. G. Miles. 1989. Edible Mushrooms and Their Cultivation. CRC Press, Boca Raton, FL, 345 pp.
- Chapman, D.H and F. Parker. 1961. Determination of NPK. In: Methods of analysis for soils, plants and water. 1st Ed. California University, Agriculture Division, USA. pp: 150-179.
- Dundar, A. and A. Yildiz. 2009. A comparative study on Pleurotus ostreatus (jacq.) P. kumm. cultivated on different agricultural lignocellulosic wastes. Turk. J. Biol., 33: 171-179.
- Eissa, H.A.A. 2008. Effect of chitosan coating on shelf-life and quality of fresh-cut mushroom. Pol. J. Food Nutr. Sci. 58(1): 95-105.
- Gogavekar, S.S. S. A. Rokade, R.C. Ranveer, J.S. Ghosh, D.C. Kalyani and A. K. Sahoo.2014. Important nutritional constituents, flavour components, antioxidant and antibacterial properties of *Pleurotus sajor-caju.* J. Food. Sci. Tech. 51 (8): 1483-1491.
- Goyal, R.1, R.B. Grewal, and R.K. Goyal. 2006.Nutritional attributes of agaricus Bisporus and Pleurotus sajor caju mushrooms. Nutr Health. 18(2):179-84.
- Hortwitz, W. 1960. Official and Tentative Methods of Analysis, Vol. 9, pp: 320–41. Association of the Official Agriculture Chemist. Washington, D.C.
- Iqbal, M.S., C.A. Rauf and M.I. Sheikh. 2005. Yield performance of oyster mushroom on different substrates. Int. J. Agric. Biol. 7: 900-903.
- Kashif, M. M. A. Ali, N. A. Khan, Q. S. Anjum and A. Rehman.2013. Effect of low and high quality cotton waste on yield of oyster mushroom (*pleurotus ostreatus*). Pak. J. Phytopathol. 25 (01) – 91-94.
- Khan, A. N., H. U. Rehman, A. Rehman and M. J. Arif. 2010. Screening of different exotic strains of oyster mushroom for yield production using cotton waste and combined with rice husk., Pak. J.

Phytopathol. 22 (1): 40-44.

- Khan, N.A., M.I. Haq and M.A. Khan. 2009. Growth comparison of local and exotic strains of oyster mushrooms on different agricultural wastes. Pak. J. Phytopathol. 21(2): 139-143.
- Mandeel, Q. A., A. A. Al-Laith, and S. A. Mohamed. 2005. Cultivation of oyster mushrooms (*Pleurotus* spp.) on various lignocellulosic wastes. World. J. Microb. Biot. 21 (4): 601-607.
- Oyetayo, F.L, A.A, Akindahunsi, and V.O. Oyetayo. 2007. Chemical profile and amino acids composition of edible mushrooms Pleurotus sajor-caju. Nutr Health.18(4):383-9.
- Ruck, J.A., 1969. Chemical Methods for Analysis of Fruits and Vegetables. Research Station Summerland, Canada Department of Agriculture, Publication No:1154.

- Sangwan, M. S., and L. C. Saini. 1995. Cultivation of Pleurotus sajorcaju (Fr.) Singer on agro-industrial wastes. Mushroom Res. 4. 33–34.
- Steel, R.G.D. and J.H. Torre. 1984. Principles and Procedures of Statistics. McGraw Hill Book Co., Inc., New York: 173-191.
- Sturion, G. L., and M. Oetterer. 1995. Composic_~ao qu_imica decogumelos comest_iveis (Pleurotus spp.) originados de cultivos em diferentes substratos. Ci^encia e Tecnologia de Alimentos, 15(2):189–193.
- Suguimoto, H. H., A. M., Barbosa, R. F., Dekker, and R. J. H. Castro-Gomez. 2001. Veratryl alcohol stimulates fruiting body formation in the oyster mushroom, Pleurotus ostreatus. FEMS Microbiology Letter, 194, 235–238.