IN SILICO ANALYSIS OF ASPERGILLUS FLAVUS FUNGAL PROTEINS: STRUCTURAL AND FUNCTIONAL INSIGHTS USING ITS PRIMERS

Mariana Mariana, Saipul Abbas, Salamiah Salamiah, Yusriadi Marsuni, Samharinto Soedijo, Muslimin Sepe, Muhammad I. Pramudi, Ismed S. Budi, Dewi Fitriyanti, Elly Liestiany, Lyswiana Aphrodyanti, Noor Aidawati, Helda O. Rosa

Abstract


Aspergillus spp. is a type of fungi that can contaminate and damage various types of food and agricultural products. To better understand the structure and function of proteins, in silico research was conducted using Internal Transcribed Spacer (ITS) primers and SWISS Model protein prediction tools. The objective of this study was to identify fungal species using the BLAST method and to analyze the structure and function of proteins from Aspergillus spp. The methods used included BLAST for species identification, Web Expasy to translate DNA sequences into proteins, SWISS Models to model protein structures, SAVES to validate protein structures, and STRING to analyze the function of proteins. The results of the BLAST analysis showed that the identified fungal species were Aspergillus flavus, A. tamarii, and A. nomius. Furthermore, the results of translating DNA sequences into proteins using Web Expasy showed that there were three open reading frames with the highest residual values of 119 and 83, while the lowest residual value was 4. Only two of these frames met the protein criteria. Moreover, the results of protein structure modeling using the SWISS Model method produced a fairly accurate Aspergillus spp. protein structure model with a validation value of protein structure using ERRAT (SAVES V6.0) of 100%. Additionally, the results of protein function analysis using STRING showed that the Aspergillus spp. protein has a function in producing enzymes that play a role in the metabolic process of cells.


Keywords


Aspergillus flavus; in silico; ITS primer; protein structure; protein function; SWISS Model.

Full Text:

PDF

References


Ayaz, A., Zaman, W., Saqib, S., Ullah, F., & Mahmood, T. (2020). Phylogeny and diversity of Lamiaceae based on rps14 gene in Pakistan. Genetika, 52(2), 435-452. https://doi.org/10.2298/GENSR2002435A

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). From DNA to RNA. In Molecular Biology of the Cell. 4th edition. Garland Science.

Abrar, M., Anjum, F. M., Butt, M. S., Pasha, I., Randhawa, M. A., Saeed, F., & Waqas, K. (2013). Aflatoxins: biosynthesis, occurrence, toxicity, and remedies. Critical reviews in food science and nutrition, 53(8), 862-874. https://doi.org/10.1080/10408398.2011.563154

Ayofemi Olalekan Adeyeye, S. (2020). Aflatoxigenic fungi and mycotoxins in food: a review. Critical reviews in food science and nutrition, 60(5), 709-721. https://doi.org/10.1080/10408398.2018.1548429

Amaike, S., & Keller, N. P. (2011). Aspergillus flavus. Annual review of phytopathology, 49, 107-133. https://doi.org/10.1146/annurev-phyto-072910-095221

Bhatnagar-Mathur, P., Sunkara, S., Bhatnagar-Panwar, M., Waliyar, F., & Sharma, K. K. (2015). Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant science, 234, 119-132. https://doi.org/10.1016/j.plantsci.2015.02.009

Bhattacharya, A., Tejero, R., & Montelione, G. T. (2007). Evaluating protein structures determined by structural genomics consortia. Proteins: Structure, Function, and Bioinformatics, 66(4), 778-795. https://doi.org/10.1002/prot.21165

Blackburn, G. M. (Ed.). (2006). Nucleic acids in chemistry and biology. Royal Society of Chemistry.

Breda, A., Valadares, N. F., de Souza, O. N., & Garratt, R. C. (2007). Protein structure, modelling and applications. In Bioinformatics in tropical disease research: a practical and case-study approach [Internet]. National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK6824/

Benkert, P., Tosatto, S. C., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function, and Bioinformatics, 71(1), 261-277. https://doi.org/10.1002/prot.21715

Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27(3), 343-350. https://doi.org/10.1093/bioinformatics/btq662

Bordoli, L., & Schwede, T. (2012). Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Homology Modeling: Methods and Protocols, 107-136. https://doi.org/10.1007/978-1-61779-588-6_5

Bose, P., Gowrie, S. U., & Chathurdevi, G. (2019). Optimization of Culture Conditions for Growth and Production of Bioactive Metabolites by Endophytic Fungus-Aspergillus tamarii. International Journal of Pharmacy and Biological Sciences, 9(2), 469-478. https://doi.org/10.21276/ijpbs.2019.9.2.60

Balina, A., Kebede, A., & Tamiru, Y. (2018). Review on aflatoxin and its impacts on livestock. Journal of Dairy and Veterinary Sciences, 6(2), e555685. https://doi.org/10.19080/JDVS.2018.06.555685

Bashir, S., Janiad, S., Zeeshan, A., Farah, N., Mehboob, S., Butt, H. I., & Qari, S. H. (2022). In Silico Analysis and Function Prediction of Sr22 Gene Product as Stem Rust Resistant Protein. Annals of the Romanian Society for Cell Biology, 26(01), 258-262. http://annalsofrscb.ro

Cram, D. J., & Cram, J. M. (1971). Cyclophane chemistry: bent and battered benzene rings. Accounts of Chemical Research, 4(6), 204-213. https://doi.org/10.1021/ar50042a003

Corley, M., Burns, M. C., & Yeo, G. W. (2020). How RNA-binding proteins interact with RNA: molecules and mechanisms. Molecular cell, 78(1), 9-29. https://doi.org/10.1016/j.molcel.2020.03.011

de la Cruz, J., Karbstein, K., & Woolford Jr, J. L. (2015). Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annual review of biochemistry, 84, 93-129. https://doi.org/10.1146/annurev-biochem-060614-033917

Dhanamjayulu, P., Boga, R. B., & Mehta, A. (2019). Inhibition of aflatoxin B1 biosynthesis and down regulation of aflR and aflB genes in presence of benzimidazole derivatives without impairing the growth of Aspergillus flavus. Toxicon, 170, 60-67. https://doi.org/10.1016/j.toxicon.2019.09.018

Damodaran, S., & Parkin, K. L. (2017). Amino acids, peptides, and proteins. In Fennema’s food chemistry (pp. 235-356). CRC Press.

Dreyfuss, G., Kim, V. N., & Kataoka, N. (2002). Messenger-RNA-binding proteins and the messages they carry. Nature reviews Molecular cell biology, 3(3), 195-205. https://doi.org/10.1038/nrm760

Dutta, B., Banerjee, A., Chakraborty, P., & Bandopadhyay, R. (2018). In silico studies on bacterial xylanase enzyme: Structural and functional insight. Journal of Genetic Engineering and Biotechnology, 16(2), 749-756. https://doi.org/10.1016/j.jgeb.2018.05.003

Elliott, D., & Ladomery, M. (2017). Molecular biology of RNA. Oxford University Press.

Frank, J., & Spahn, C. M. (2006). The ribosome and the mechanism of protein synthesis. Reports on Progress in Physics, 69(5), 1383. https://doi.org/10.1088/0034-4885/69/5/R03

Fouad, A. M., Ruan, D., El-Senousey, H. K., Chen, W., Jiang, S., & Zheng, C. (2019). Harmful effects and control strategies of aflatoxin b1 produced by Aspergillus flavus and Aspergillus parasiticus strains on poultry. Toxins, 11(3), 176. https://doi.org/10.3390/toxins11030176

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., ... & Jensen, L. J. (2012). STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic acids research, 41(D1), D808-D815. https://doi.org/10.1093/nar/gks1094

Glisovic, T., Bachorik, J. L., Yong, J., & Dreyfuss, G. (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS letters, 582(14), 1977-1986. https://doi.org/10.1016/j.febslet.2008.03.004

Gourama, H., & Bullerman, L. B. (1995). Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: A review. Journal of Food protection, 58(12), 1395-1404. https://doi.org/10.4315/0362-028X-58.12.1395

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784-3788. https://doi.org/10.1093/nar/gkg563

Hou, T., Sana, S. S., Li, H., Xing, Y., Nanda, A., Netala, V. R., & Zhang, Z. (2022). Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Bioscience, 47, 101716. https://doi.org/10.1016/j.fbio.2022.101716

Kirubakaran, P., Karthikeyan, M., Singh, K. D., Nagamani, S., & Premkumar, K. (2013). In silico structural and functional analysis of the human TOPK protein by structure modeling and molecular dynamics studies. Journal of molecular modeling, 19, 407-419. https://doi.org/10.1007/s00894-012-1566-1

Klich, M. A. (2007). Aspergillus flavus: the major producer of aflatoxin. Molecular plant pathology, 8(6), 713-722. https://doi.org/10.1111/j.1364-3703.2007.00436.x

Laskowski, R. A., Furnham, N., & Thornton, J. M. (2013). The Ramachandran plot and protein structure validation. In Biomolecular forms and functions: a celebration of 50 years of the ramachandran map (pp. 62-75). https://doi.org/10.1142/ 9789814449144_0005

Lake, J. A. (1981). The ribosome. Scientific American, 245(2), 84-97. https://doi.org/10.1038/ scientificamerican0881-84

Lovell, S. C., Davis, I. W., Arendall III, W. B., De Bakker, P. I., Word, J. M., Prisant, M. G., ... & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437-450. https://doi.org/10.1002/prot.10286

Lobo, I. (2008). Basic local alignment search tool (BLAST). Nature Education, 1(1).

Nguyen, H. N., Chaves-Lopez, C., Oliveira, R. C., Paparella, A., & Rodrigues, D. F. (2019). Cellular and metabolic approaches to investigate the effects of graphene and graphene oxide in the fungi Aspergillus flavus and Aspergillus niger. Carbon, 143, 419-429. https://doi.org/10.1016/j.carbon.2018.10.099

Ogodo, A. C., & Ugbogu, O. C. (2016). Public health significance of aflatoxin in food industry—A review. European Journal of Clinical and Biomedical Sciences, 2(5), 51-58. https://doi.org/10.11648/j.ejcbs.20160205.14

Rozario, L. T., Sharker, T., & Nila, T. A. (2021). In silico analysis of deleterious SNPs of human MTUS1 gene and their impacts on subsequent protein structure and function. PloS one, 16(6), e0252932. https://doi.org/10.1371/journal.pone.0252932

Ramirez, M. L., Cendoya, E., Nichea, M. J., Zachetti, V. G. L., & Chulze, S. N. (2018). Impact of toxigenic fungi and mycotoxins in chickpea: A review. Current Opinion in Food Science, 23, 32-37. https://doi.org/10.1016/j.cofs.2018.05.003

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., & Mering, C. V. (2010). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic acids research, 39(suppl_1), D561-D568. https://doi.org/10.1093/nar/gkq973

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., ... & von Mering, C. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic acids research, 51(D1), D638-D646. https://doi.org/10.1093/nar/gkac1000

Tam, E. W., Chen, J. H., Lau, E. C., Ngan, A. H., Fung, K. S., Lee, K. C., & Woo, P. C. (2014). Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology, 52(4), 1153-1160. https://doi.org/ 10.1128/JCM.03258-13

Von Hippel, P. H., Bear, D. G., Morgan, W. D., & McSwiggen, J. A. (1984). Protein-nucleic acid interactions in transcription: a molecular analysis. Annual Review of Biochemistry, 53(1), 389-446. https://doi.org/ 10.1146/annurev.bi.53.070184.002133

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427

Yu, J., Cleveland, T. E., Nierman, W. C., & Bennett, J. W. (2005). Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Revista iberoamericana de micología, 22(4), 194-202. https://doi.org/10.1016/S1130-1406(05)70043-7

Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi chemical society, 15(2), 129-144. https://doi.org/10.1016/j.jscs.2010.06.006




DOI: https://doi.org/10.33866/phytopathol.035.02.1037

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Saipul Abbas

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.