Induced Variability of Tomato Seeds (Lycopersicon esculentum) by Gamma Irradiation and Early Detection of Tomato Variants Resistance to Anthracnose
Abstract
Gamma irradiation (GI) is an effective tool used in mutation breeding programs for improving various characteristics in horticultural plants, including obtaining tomato cultivars resistant to diseases. The study aims to improve various characteristics in tomato plants, particularly in enhancing resistance to anthracnose disease, through physical mutagenesis using GI. Tomato seed cultivar Timothy F1 was exposed to different doses of GI at 50 to 120 Gy, with un-irradiated seed used as a control. The effect of GI on tomato seeds involves aspects of viability, vigor testing, and the resulting phenotypic changes. Viability and Vigor testing of gamma irradiated seeds showed that germination potential ranged from 46-84%, maximum growth potential ranged from 78-94%, germination vigor index ranged from 40-80%, and seed emergence uniformity ranged from 62-82%. Analysis of the lethal dose for tomato seeds was determined to be 132.49 Gy. GI at 60-120 Gy significantly affects plant characteristics, including lower plant height, reduced number of leaves, narrower leaf width, and phenotypically longer leaves compared to the control plants. Most irradiated seeds showed susceptibility to Colletotrichum sp., with disease incidence ranging from 90-100% and disease severity index (DSI) ranging from 32.5-70.0%. However, the 70 Gy-irradiated tomato plant exhibited enhanced resistance to anthracnose disease, with the lowest DSI among the treatments. Identified tomato variants showing potential resistance to anthracnose will be further evaluated in a greenhouse to confirm their resistance.
Keywords
Full Text:
PDFReferences
Ahmad, H., N.A. Rajput, M. Atiq, G.A. Kachelo, M. Usman, H. Tariq and M. Wahab. 2024. Detection of Phytophthora nicotiana induced citrus gummosis by the loop mediated isothermal amplification. Pakistan Journal of Botany, 56(5): 1-11.
Aisyah. 2013. Mutasi induksi. Dalam: Syukur M. dan Sastrosumarjo S., (eds). Sitogenetika Tanaman. Bogor: IPB Press.
Albokari, M., M. Alzahrani, S. M., and Alsalman, A. S. Radiosensitivity of some local cultivar of wheat (Triticum aestivum L.) to gamma irradiation. 2012. Bangladesh Jornal of Botany. 41(1): 1-5. http://dx.doi.org/10.3329/bjb.v41i1.11075
Alkan, N., G.Friedlander, D. Ment, D.Prusky, and R.Fluhr, 2014. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist, 205(2), 801–815.
Atiq, M., M.Z. Talib, N.A. Rajput, S.T. Sahi, M.A. Khan, M. Usman, A. Jabar, M.J. Arif, M.D. Gogi, M.A. Khan and A. Akram. 2023. New-fangled tactics towards Cotton leaf curl virus disease A review. Journal of Natural Fibers, 20 (2): 2217364.
Atiq, M., N.A. Rajput, S.T. Sahi, A. Akram, M. Usman, G.A. Kachelo, H. Ahmad, A.Q. Khan, H. Tariq, S. Ramzan, Z.B. Tahir and M.J. Matloob. 2022. A way forward towards the management of chilli anthracnose -a review. Agricultural Science Journal, 4(1): 1-10.
Auyong, A., S. Ford, R. and Taylor, P. W. 2015. The role of cutinase and its impact on pathogenicity of Colletotrichum truncatum. Plant Pathology and Microbiology 6(3). 259. http://dx.doi.org/10.4172/2157-7471.1000259.
Bewley, J.D, 1997. Seed Germination and Dormancy. The Plant Cell. 9, 7, 1055-1066.
Bioversity International. [BI] 2013. Descriptors for tree tomato (Solanum betaceum Cav.) and wild relatives. Diversity International, Rome, Italy.
Bradbeer, J. W., 1988. Seed Dormancy and Germination © Blackie and Son Ltd 1988
Cabrera, L., P.Rojas, S. Rojas,C. J. Pardo‐De la Hoz, M. Mideros, G. Danies, S. Restrepo, 2018. Most Colletotrichum species associated with tree tomato (Solanum betaceum) and mango (Mangifera indica) crops are not host-specific. Plant Pathology, 67(5), 1022–1030.https://doi.org/10.1111/ppa.12829
Cannon, P. F., U. Damm, P.Johnston, R., and Weir, B. S. 2012. Colletotrichum—Current status and future directions. Studie in. Mycolgyl. 73, 181–213. https://doi.org/10.3114%2Fsim0014
Chaudhary, J., A. Alisha, V. Bhatt, S. Chandanshive, N. Kumar, R. Deshmukh. 2012. Mutation Breeding in Tomato: Advances, Applicability and Challenges. Plants. 8, 128. https://doi.org/10.3390/plants8050128
Chiang, K. S., H. I.Liu., and C. H. Bock. 2017. A discussion on disease severity index values. Part I: warning on inherent errors and suggestions to maximize accuracy. Annals of Applied Biology, 171(2), 139–154. https://doi.org/10.1111/aab.12362
Cui, L., van den Munckhof, M. C., Y. Bai, and R. E. Voorrips. 2023. Resistance to Anthracnose Rot Disease in Capsicum. Agronomy. 13, 1434. https://doi.org/10.3390/agronomy13051434
De Silva, D., P. K. Ades, P. Crous and P. Taylor. 2017. Colletotrichum species associated with chili anthracnose in Australia. Plant Pathology. 66, 254–267. https://doi.org/10.1111/ppa.12572
Diao, Y., C. Zhang, D. Lin, and X. L Liu. 2014. First Report of Colletotrichum truncatum causing anthracnose of tomato in China. Plant Disease, 98(5), 687–687.https://doi.org/10.1094/pdis-05-13-0491-pdn
Egli, D., and M. Rucker. 2012. Seed Vigor and the Uniformity of Emergence of Corn Seedlings. Crop Science, 52(6), 2774. https://doi.org/10.2135/cropsci2012.01.0064
Finch-Savage, W.E. and G.W. Bassel. 2016. Seed vigor and crop establishment: Extending performance beyond adaptation. Journal of Experimental Botany, 67 (3), 567–591. https://doi.org/10.1093/jxb/erv490
Giacomin, R., Ruas, A. Moreira, G. Guidone, V. Baba, R. Rodrigues and L. Gonçalves. 2020. Inheritance of anthracnose resistance (Colletotrichum scovillei) in ripe and unripe Capsicum annuum fruits. Journal of Phytopathology, 168, 184–192. https://doi.org/10.1111/jph.12880
Hase, Y., K. Satoh, S. Kitamura, and Y. Oono. 2018. Physiological status of plant tissue affects the frequency and types of mutations induced by carbon-ion irradiation in Arabidopsis. Scientific Report 8, 1394 https://doi.org/10.1038/s41598-018-19278-1
Herwidyarti, K., S. Ratih and D. Sembodo. 2013. Keparahan penyakit antraknosa pada cabai (Capsicum annuum L.) dan berbagai jenis gulma. Agrotek Tropika, 1(1), 102–106.
Hirsch, S., R. Baumberger and U. Grossniklaus. 2012. Epigenetic Variation, Inheritance, and Selection in Plant Populations Institute of Plant Biology and Zu¨ Rich-Basel Plant Science Center. Cold Spring Harbor Symposia on Quantitative Biology, 77, 97-104. https://doi.org/10.1101/sqb.2013.77.014605
Huang, R., W. Sun, L. Wang, Q. Li, S. Huang, L. Tang, T. Hsiang. 2021. Identification and characterization of Colletotrichum species associated with anthracnose disease of banana. Plant Pathology https://doi.org/10.1111/ppa.13426
Indrayanti, R., and Sudarsono. 2011. Virulensi dan efektifitas filtrat kultur F. oxysporum f.sp cubense isolat Banyuwangi untuk pengujian ketahanan pisang Ampyang terhadap layu Fusarium..Zuriat J. Pemuliaan Indonesia. 22,1. https://doi.org/10.24198/zuriat.v22i1.6
Indrayanti, R., Mattjik, N. A., A. Setiawan and Sudarsono. 2012. Identifikasi Ketahanan Tanaman Pisang Ampyang Hasil Mutasi Induksi Terhadap Penyakit Layu Fusarium Di Rumah Kaca. Prosiding Simposium dan Seminar Bersama PERAGI-PERHORTI-PERIPI-HIGI Mendukung Kedaulatan Pangan dan Energi yang Berkelanjutan ISBN: 978-979-15649-6-0 327. Pp/ 327-332
International Plant Genetic Resource [IPGRI] 1996. Descriptors for Tomato (Lycopersicon spp). https://pdf.usaid.gov/pdf_docs/Pnach864.pdf.
International Seed Testing Association. [ISTA] 2015. International rules for seed testing. Basserdorf, Switzerland.
Iqbal, S., M.A. Khan, M. Atiq, N.A. Rajput, M. Usman, A. Nawaz, G.A. Kacheo, A. Akram and H. Ahmad. 2022. Mango anthracnose: Global status and the way forward for disease management. Journal of Innovative Sciences, 8(2): 222-235.
Istifadah, N., A. Ayuningtyas, C. and Nasahi. 2017. Efek pencampuran bahan pestisida nabati terhadap keefektifannya dalam menekan Colletotrichumspp. in vitro serta penyakit antraknosa pada stroberi. Agrologia, 6(1), 26–36.
Jankowicz-Cieslak, J., C. Mba and B.J. Till., 2017. Mutagenesis for Crop Breeding and Functional Genomics. In Jankowicz-Cieslak, J., et al., (eds). Biotechnologies for Plant Mutation Breeding pp. 39–54.
Jo, Y.D., and J. Kim. 2019. Frequency and Spectrum of Radiation-Induced Mutations Revealed by Whole-Genome Sequencing Analyses of Plants. Quantum Beam Science. 3(2), 7. https://doi.org/10.3390/qubs3020007
Kovács, E., and Keresztes. 2002. Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199–210
Kumar, D., and P. Venu-Babu, (2013). Gamma radiosensitivity study on rice (Oryza sativa L.). Gamma radiosensitivity study on rice (Oryza sativa L.) Asian Journal of Plant Science and Reearchs. 3 (1), 54–68.
Kumari, P., R. Singhand R. Punia. 2017. Evaluation of Different Inoculation Methods for Mango Anthracnose Disease Development. International Journal of Current Microbiology and Applied Sciences6(11), 3028-3032. https://doi.org/10.20546/ijcmas.2017.611.355
Lamo, K., D. Bhat, K. Kour, and S. Solanki. 2017. Mutation Studies in Fruit Crops: A Review. International Journal of Current Microbiology and Applied Sciences 6(12),3620-3633. https://doi.org/10.20546/ijcmas.2017.612.418.
Li, Q., J. Bu, J. Shu, , Z. Yu, , L. Tang, S. Huang, and T. Hsiang, 2019. Colletotrichum species associated with mango in southern China. Scientific Report 9, 18891. https://doi.org/10.1038/s41598-019-54809-4
Majeed, A., Z. Muhammad, R. Ullah, Z. Ullah, R. Ullah, Z. Chaudhry and S. Siyar. 2017. Effect of gamma irradiation on growth and post-harvest storage of vegetables. PSM Biological Researchs. 2(1), 30-35. ISSN: 2517-9586 (Online)
Manova, V., Z. Stoyanova, R. Rodeva, I. Boycheva, H. Korpelainen, E. Vesterinen and G. Bonchev. 2022. Morphological, Pathological and Genetic Diversity of the Colletotrichum Species, Pathogenic on Solanaceous Vegetable Crops in Bulgaria. J. Fungi, 8, 1123. https://doi.org/10.3390/jof8111123
Milošević, N., D.M. Vujaković and D. Karagić. 2010. Vigor Tests as Indicators of Seed Viability. Genetika, 42 (1), 103-118. https://doi.org/10.2298/GENSR1001103M
Momtaz, M., S. Shamsi and T. Dey. 2022. Prevalence of fungi associated with seven wheat varieties and seed quality analysis. Journal of Biodiversity Conservation and Bioresource Management, 8(1), 33–48. https://doi.org/10.3329/jbcbm.v8i1.62221
Naheed, A. 2014. Effect of physical and chemical mutagens on morphological behavior of tomato (Solanum lycopersicum) cv. “Rio Grande” under heat stress conditions. Plant Breeding and Seed Science. 70, 69078. http://dx.doi.org/10.1515/plass-2015-0014
Nazarov, P., D. Baleev, M. Ivanova, L. Sokolova and M.Karakozova. 2020. Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection. Acta Naturae.12(3), 46-59. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604890/
Nurbailis, Martinius, R. Naipinta, 2017. Kesintasan beberapa jamur antagonis pada buah cabai dan potensinya dalam menekan penyakit antraknosa yang disebabkan oleh Colletotrichum gloeosporioides. J. HPT Tropika, 17(2), 162–169.
Pardo-De la Hoz, C. J., C. Calderón, A.M. Rincón, M. Cárdenas, G. Danies, L. López-Kleine, L., P. Jiménez, 2016. Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227–237. http://dx.doi.org/10.1111/ppa.12410
Rao, Cantila, A. Y. Manual of Seed Handling in Genebanks. Handbooks for Genebanks No. 8. Bioversity International. Italy. 163 pp. ISBN 13: 978-92-9043-740-6
Sadjad, S. 1994. Kuantifikasi Metabolisme Benih. Jakarta: Widia Sarana Indonesi
Saha, A., M. Isha, S. Dasgupta and D . Saha. 2010. Pathogenicity of Colletotrichum gloeosporioides (Penz.) Sacc. causal agent of anthracnose in different varieties of eggplant (Solanum melongena L.) determined by levels of cross-reactive antigens shared by host and pathogen. Archives of Phytopathology and Plant Protection, 43(18), 1781–1795. https://doi.org/10.1080/03235400902753667
Saini, T., J. Gupta and R. Anandalakshmi 2017. Detection of tomato anthracnose caused by Colletotrichum truncatum in India. Australasian Plant Disease. Notes,12, 48. http://dx.doi.org/10.1007/s13314-017-0271-4
Shad, M., A. Nazir, M. Usman, M.W. Akhtar and M. Sajjad. 2024. Investigating the effect of SUMO fusion on solubility and stability of amylase-catalytic domain from Pyrococcus abyssi. International Journal of Biological Macromolecules, 266: 131310.
Sikder, S., P. Biswas, P. Hazra, S. Akhtar, A. Chattopadhyay, A., Badigannavar, and S. D’Souza. 2013. Induction of mutation in tomato (Solanum lycopersicum L.) by gamma irradiation and EMS. Indian Journal of Genetic and Plant Breeding, 73(4), 392-399. http://dx.doi.org/10.5958/j.0975-6906.73.4.059
Singh, N., R. Kumar and S. K. Ray. 2018. An Innovative Approach to Study Ralstonia solanacearum Pathogenicity in 6 to 7 Days Old Tomato Seedlings by Root Dip Inoculation. Bio-protocol. 8(21): e3065. https://doi.org/10.21769/BioProtoc.3065
Souza, L., L. Assis, A. Catarino and R. Hanada. 2020. Screening of chilli pepper genotypes against anthracnose (Colletotrichum brevisporum). Emirate Journal of Food and Agriculture. 31, 919–929. https://doi.org/10.9755/ejfa.2019.v31.i12.2039
Sriyanti, N., D. Supraptraand, I. K. Suada. 2015. Uji keefektifan rizobakteri dalam menghambat pertumbuhan jamur Colletotrichumspp. penyebab antraknosa pada cabai merah (Capsicum annuum L.). E-Jurnal Agroektoteknologi Tropika, 4(1), 53–65.
Suryadi, Y., T.Priyatno, I.Samudra, , D. Susilowati, H. Nurzulaika and S. Syaefudin. 2016. Waktu inkubasi pada derajat distilasi kitosan enzim dan efektifitas penghambatannya terhadap penyakit antraknosa. Jurnal Fitopatologi Indonesia, 12(6), 209–217.
Sutapa, G. N., & Kasmawan, I. G. A. 2016. Efek induksi mutasi radiasi gamma Co 60 pada pertumbuhan fisiologis tanaman tomat (Lycopersicon esculentum L.). Jurnal Keselamatan Radiasi Dan Lingkungan, 1(2), 5–11.
Tahir, Z.B. M. Atiq, N.A. Rajput, A. Akram, A.M. Arif, S. Iqbal, S. Ali, A. Nawaz, M. Usman and A. Husnain. 2023. Determination of Biochemical base line of resistance against bacterial leaf spot of chilli after application of plant defense activators. Journal of Global Innovations in Agricultural Sciences, 11(1): 61-67.
Usman, M., M. Atiq, N.A. Rajput, S.T Sahi, M. Shad, N. Lili, S. Iqbal, A.M Arif, U. Ahmad, K.S. Khan, M. Asif and F.U. Haider. 2024. Efficacy of green synthesized silver-based nanomaterials against early blight of tomato caused by Alternaria solani. Gesunde Pflanzen, 76(1): 105-115.
Vargas, W. A.,J. M. S. Martín, G. E. Rech, L. P. Rivera, E. P. Benito, J. M. Díaz-Míngue and S. A. Sukno. 2012. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol.158(3),1342-58. https://doi.org/ 10.1104/ pp.111.190397
Weraduwage, S. M., J. Chen, F. C. Anozie, A. Morales, S. E. Weise and T. D. Sharkey. 2015. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in plant science, 6, 167. https://doi.org/10.3389/fpls.2015.00167
Zafar, S. A., M. Aslam, M. Albaqami, A. Ashraf, A. Hassan, J. Iqbal, and A. T. K Zuan. 2022. Gamma rays induced genetic variability in tomato (Solanum lycopersicum L.) germplasm. Saudi Journal of Biological Sciences 29, 3300–3307. https://doi.org/ 10.1016/ j.sjbs.2022.02.008.
DOI: https://doi.org/10.33866/phytopathol.036.02.1047
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Reni Indrayanti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pakistan Journal of Phytopathology ISSN: 1019-763X (Print), 2305-0284 (Online). © 2013 Pak. J. Phytopathol. All rights reserved. |