Arbusclar Mycorriza Induced Antioxidant Defense Mechanism in Tomato Plant Against Fusarium Oxysporum
Abstract
This investigation is aimed to explored the associative impact of Arbuscular Mycorrhizal fungus (AM) like Glomus etunicatum, G. leptoticum, and Rhizophagus intraradice, with tomato crops to induce an integrated defense against plant pathogen Fusarium oxysporum. The administration of AM fungi in plant can decreased a disease progression in vascular tissue. This impact can be seen on the basis of dry weight of leaf and root of plant. Increased dry weight of leafs indicates decreased Fusarium induced wilting due to raised chlorophyll content. This all beneficial impact of AM association is due to production of higher concentration antioxidant enzymes of tomato plants. The increased concentration of antioxidant enzymes is observed glutathione peroxidase was show 100.79U; phenylalanine ammonia lyase showed 3.09 U; Polyphenol oxidases 0.43 U respectively in presence of high organic matter. This increased antioxidant enzymes including glutathione reductase, catalase, polyphenol oxidase also helps to increase defense mechanism of plants by remove or scavenge reactive oxygen species produced during course of fungal infection. This study explores the associative role of Arbascular and mycorrhizal fungi in increased antioxidant enzyme systems in tomato plant. This induction not only helps in plants growth but also resist fungal plant pathogen like fusarium at a great extent. However, to develop this mechanism in crop development further investigations are required.
Keywords
Full Text:
PDFReferences
Abd El-Rahman, S. S., M. M. Mazen, H. I. Mohamed and N. M. Mahmoud. 2012. Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. European Journal of Plant Pathology, 134, 105-116.
Abdelaziz, A. M., M. S. Attia, M. S. Salem, D. A. Refaay, W.A. Alhoqail and H. H. Senousy. 2022. Cyanobacteria-mediated immune responses in pepper plants against fusarium wilt. Plants, 11(15), 2049.
Abdelrahman, M., F. Abdel-Motaal, M. El-Sayed, S. Jogaiah, M. Shigyo, S. I. Ito and L. S. P. Tran. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science, 246, 128-138.
Abo-Elyousr, K. A., M. A. Seleim, K. M. Abd-El-Moneem, and F. A. Saead. 2014. Integrated effect of Glomus mosseae and selected plant oils on the control of bacterial wilt disease of tomato. Crop Protection, 66, 67-71.
Akhter, A., K. Hage-Ahmed, G. Soja and S. Steinkellner. 2015. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Science, 6, 529.
Bashir, A., M.T. Khan, R. Ahmed, B. Mehmood, M.T. Younas, H.M. Rehman and S. Hussain. 2020. Efficiency of selected botanicals against (Alternaria solani) causing early blight disease on tomato in Azad Jammu and Kashmir. Pakistan Journal of Phytopathology, 32(2): 179-186.
Beltrano, J., M. Ruscitti, M. C. Arango and M. Ronco. 2013. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. Journal of Soil Science and Plant Nutrition, 13 (1): 123–141.
Bernaola, L., M. Cosme, R. W. Schneider and M. Stout. 2018. Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms. Frontiers in Plant Science, 9, 747.
Brueske, C. H., 1980. Phenylalanine ammonia lyase activity in tomato roots infected and resistant to the root-knot nematode, Meloidogyne incognita. Physiological Plant Pathology, 16(3): 409-414.
Constabel, C. P., D. R. Bergey and C. A. Ryan. 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proceedings of the National Academy of Sciences, 92(2): 407-411.
Cordier, C., M. J. Pozo, J. M. Barea, S. Gianinazzi and V. Gianinazzi-Pearson. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular plant-microbe interactions, 11(10): 1017-1028.
Davies Jr, F. T. and R. G. Linderman, R. G. 1991. Short term effects of phosphorus and VA-mycorrhizal fungi on nutrition, growth and development of Capsicum annuum L. Scientia Horticulturae, 45(3-4): 333-338.
Dewan, M. M., 1988. Identity and frequency of occurrence of fungi in roots of wheat and rye grass and their effect on take-all and host growth (Doctoral dissertation, University of Western Australia).
Egamberdieva, D., S. J. Wirth, V. V. Shurigin, A. Hashem, E. F. Abd_Allah. 2017. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8, 1887.
Evelin, H., R. Kapoor and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of botany, 104(7): 1263-1280.
Hanson, P., S. F. Lu, J. F. Wang, W. Chen, L. Kenyon, C. W. Tan and R. Y. Yang. 2016. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae, 201, 346-354.
Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Radhakrishnan, R., & Kumar, A. 2017. Plant defense approach of Bacillus subtilis (BERA 71) against Macrophomina phaseolina (Tassi) Goid in mung bean. Journal of Plant Interactions, 12(1), 390-401.
Hashem, A., E. F. Abd_Allah, P. Ahmad. 2015. Effect of AM fungi on growth, physiobiochemical attributes, lipid peroxidation, antioxidant enzymes and plant growth regulators in Lycopersicon esculentum Mill. subjected to different concentration of NaCl. Pak. J. Bot. 47, 327–340.
Huang, Y.M., A. K. Srivastava,Y. N. Zou, Q. D. Ni, Y. Han and Q. S. Wu. 2014. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Frontiers in Microbiology, 5: 682.
Hyakumachi, M., 2013. Research on biological control of plant diseases: present state and perspectives. Journal of General Plant Pathology, 79: 435-440.
Imran, M., K. A. Abo-Elyousr, M. A. Mousa and M. M. Saad. 2022. A study on the synergetic effect of Bacillus amyloliquefaciens and dipotassium phosphate on Alternaria solani causing early blight disease of tomato. European Journal of Plant Pathology, 162(1): 63-77.
Iqbal, O., R.N. Syed, N.A. Rajput, Y. Wang, A.M. Lodhi, R. Khan, S.M. Jibril, M. Atiq and C. Li. 2024. Antagonistic activity of two Bacillus strains against Fusarium oxysporum f. sp. capsici (FOC-1) causing Fusarium. wilt and growth promotion activity of chili plant. Frontiers in Microbiology, 15: 1388439.
Jackson, A. O. and C. B. Taylor. 1996. Plant-microbe interactions: life and death at the interface. The Plant Cell, 8(10): 1651.
Jayamohan, N. S., S. V. Patil and B. S. Kumudini. 2020. Seed priming with Pseudomonas putida isolated from rhizosphere triggers innate resistance against Fusarium wilt in tomato through pathogenesis-related protein activation and phenylpropanoid pathway. Pedosphere, 30(5): 651-660.
Khalil, A. M. A., A. H. Hashem and A.M. Abdelaziz. 2019. Occurrence of toxigenic Penicillium polonicum in retail green table olives from the Saudi Arabia market. Biocatalysis and Agricultural Biotechnology, 21: 101314.
Louis, I., and G. Lim. 1988. Differential response in growth and mycorrhizal colonisation of soybean to inoculation with two isolates of Glomus clarum in soils of different P availability. Plant and Soil, 112: 37-43.
Manjunath, A. and D. J. Bagyaraj. 1981. Components of VA mycorrhizal inoculum and their effects on growth of onion. New phytologist, 87(2): 355-361.
Michielse, C. B. and M. Rep. 2009. Pathogen profile update: Fusarium oxysporum. Molecular plant pathology, 10(3), 311.
Mousa, M. A., K. A. Abo-Elyousr, A. M. Abdel Alal and N. O. Alshareef. 2021. Management fusarium wilt disease in tomato by combinations of Bacillus amyloliquefaciens and peppermint oil. Agronomy, 11(12): 2536.
Nirmaladevi, D. and C. Srinivas, C. 2012. Cultural, morphological, and pathogenicity variation in Fusarium oxysporum f. sp. lycopersici causing wilt of tomato. Batman Üniversitesi Yaşam Bilimleri Dergisi, 2(1): 1-16.
Olatunji, T. L. and A. J. Afolayan. 2018. The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: A review. Food science & nutrition, 6(8): 2239-2251.
Panthee, D. R. and F. Chen. 2010. Genomics of fungal disease resistance in tomato. Current genomics, 11(1): 30-39.
Pieterse, C. M., C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C. Van Wees and P. A. Bakker. 2014. Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52: 347-375.
Rotruck, J. T., A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, W. Hoekstra. 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science, 179(4073): 588-590.
Ryosuke, T. and K. Yoichiro. 2013. A quick method to estimate root length in each diameter class using freeware ImageJ. Plant Production Science, 16(1): 9-11.
Shipley, B and T. T. Vu. 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153(2): 359-364.
Slezack, S., E. Dumas-Gaudot, M. Paynot and S. Gianinazzi. 2000. Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches. Molecular Plant-Microbe Interactions, 13(2): 238-241.
Tanwar, A., A. Aggarwal and V. Panwar. 2013. Arbuscular mycorrhizal fungi and Trichoderma viride mediated Fusarium wilt control in tomato. Biocontrol Science and Technology, 23(5): 485-498.
Usman, M., M. Atiq, N.A. Rajput, S.T. Sahi, M. Shad, N. Lili, S. Iqbal, A.M. Arif, U. Ahmad, K.S. Khan, M. Asif, F.U. Haider. 2023. Efficacy of Green Synthesized Silver Based Nanomaterials against Early Blight of Tomato Caused by Alternaria solani. Gesunde Pflanzen. 1-11.
Wang, H., Z. Hao, X. Zhang, W. Xie and B. Chen. 2022. Arbuscular mycorrhizal fungi induced plant resistance against fusarium wilt in jasmonate biosynthesis defective mutant and wild type of tomato. Journal of Fungi, 8(5): 422.
Wang, X., T. Ding, Y. Li, Y. Guo, Y. Li and T. Duan. 2020. Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt. Journal of applied microbiology, 129(3): 665-679.
Xian-can, Z., S. Feng-bin and X. Hong-wen. 2010. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Yingyong Shengtai Xuebao, 21(2).
Yaqoob, F., M. Atiq, N.A. Rajput, A. Nawaz, M. Kashif, M.J. Matloob, A. Jabbar, W. Din, F. Ali and A. Ullah. 2024. Appraisement of chemotherapy, plant defense activators, and genetic resistance against eyespot disease in sugarcane. Plant protection, 08(02): 325-340
Yildiz, A., 2010. A native Glomus sp. from fields in Aydın province and effects of native and commercial mycorrhizal fungi inoculants on the growth of some vegetables. Turkish Journal of Biology, 34(4): 447-452.
DOI: https://doi.org/10.33866/phytopathol.036.02.1051
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Fadia Falah Hassan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pakistan Journal of Phytopathology ISSN: 1019-763X (Print), 2305-0284 (Online). © 2013 Pak. J. Phytopathol. All rights reserved. |