DISEASE CAUSING PHYTOPATHOGENIC MICROMYCETES IN CITRUS IN UZBEKISTAN
Abstract
This research work provides information on phytopathogenic micromycetes that cause major and emerging diseases posing a significant threat to the cultivation of citrus in Uzbekistan. The purpose of the study is to develop strategies for the management of diseases by biological methods and to improve the methods of eliminating the causative agents of diseases, as well as to determine the effectiveness of micromycetes with high antifungal properties in the cultivation of citrus. The issues affecting the citrus industry and scientific recommendations to overcome those issues are discussed. Micromycetes of phytopathogens that cause diseases in the roots, rhizosphere and leaves of lemon and tangerine in closed ground conditions, including Fusarium vasinfectum, Verticillium dahliae, Alternaria alternata, F. semefectum, Aspergillus oryzae, A. flavus, Penicillium funiculosum, F. sporotrichiella, Aspergillus sp., A. terreus, P. chrysogenum, P. digitatum, F. solani, P. sp.1, A. sp.2, A. sp.3, F. sp.1, P. sp.2, F. sp.2, A. sp.4, F. sp.3 were identified.
Keywords
Full Text:
PDFReferences
Al-Askar, A., A. Ezzat, K. Ghoneem and W. Saber. 2016. Trichoderma harzianum WKY5 and its Gibberellic Acid Control of Rhizoctonia solani, Improve Sprouting, Growth and Productivity of Potato. Egyptian Journal of Biological Pest Control, 26: 787-796.
Albinas L, J. S. 2002. Toxin producing micromycetes on fruit, berries, and vegetables. Annals of Agricultural Environment and Medicin, 9: 183-197.
Alizadeh, M., Y. Vasebi and N. Safaie. 2020. Microbial antagonists against plant pathogens in Iran: A review. Open Agriculture, 5: 404-440.
Aristovskaya ТV, V. М., Gllerbach ММ, Katanskaya GА, Kashkin PN, Klupt S.Е., Lozina-LozinskiyL.К., Norkina S.P., RumyansevaV.М., Seliber G.L., Skalon I.S., Skorodumova АМ, Khetagurova FV, Chastukhin 1962. Big practicumon microbiology. Moscow. High school, 491.
Barkai, GR. 2001. Chemical control. Postharvest diseases of fruits and vegetables. Barkai-Golan R. Amsterdam: Elsevier: 147-188.
Bekmukhamedova, N. 2020. Antagonistic and growth stimulating activity of the local strain Streptomyces roseoflavus 33. plant cell biotechnology and molecular biology: 65-71.
Bilay VI. 1977. Fusarium. Kiev. Naukova dumka. 434.
Bilay, V. 1982. Methods of experimental mycology. Kiev: Naukova Dumka: 418-430.
Carmona-Hernandez, S., J. J. Reyes-Pérez, R. G. Chiquito-Contreras, G. Rincon-Enriquez, C. R. Cerdan-Cabrera and L. G. Hernandez-Montiel. 2019. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy, 9: 121.
Chet, I., N. Benhamou and S. Haran. 1998. Trichoderma and Gliocladium, Mycoparasitism and Lytic Enzymes. Taylor and Francis London, 153-172.
Cronje, C., H. Le Roux, M. Truter, I. Van Heerden and H. Phillips. 2002. Long-term effect of preplant soil solarisation on growth of replant citrus trees in South Africa. African Plant Protection, 8: 41-49.
Cuthbert, R. N., J. T. Dick, A. Callaghan and J. W. Dickey. 2018. Biological control agent selection under environmental change using functional responses, abundances and fecundities; the Relative Control Potential (RCP) metric. Biological Control, 121: 50-57.
da Silva, J. A. T., E. V. de Medeiros, J. M. da Silva, D. d. A. Tenório, K. A. Moreira, T. C. E. d. S. Nascimento and C. Souza‐Motta. 2016. Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are biocontrol agents that act against cassava root rot through different mechanisms. Journal of Phytopathology, 164: 1003-1011.
Díaz, M. A., M. M. Pereyra, E. Picón-Montenegro, F. Meinhardt and J. R. Dib. 2020. Killer Yeasts for the Biological Control of Postharvest Fungal Crop Diseases. Microorganisms, 8: 1680.
Dukare, A. S., S. Paul, V. E. Nambi, R. K. Gupta, R. Singh, K. Sharma and R. K. Vishwakarma. 2018. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical reviews in food science and nutrition, 59: 1498-1513.
Eckert, J. W. and I. Eaks. 1989. Postharvest disorders and diseases of citrus fruits. The citrus industry, 5: 179-260.
Elad, Y., R. Barak, I. Chet and Y. Henis. 1983. Ultrastructural studies of the interaction between Trichoderma spp. and plant pathogenic fungi. Journal of Phytopathology, 107: 168-175.
Elena, M. F., Dimitris D and Dimtris M. 2006. Dimou Fomitiporia mediterranea infecting citrus trees in Greece. phytopathologia mediterranea, 45: 35–39.
Espargham, N., H. Mohammadi and D. Gramaje. 2020. A survey of trunk disease pathogens within citrus trees in Iran. Plants, 9: 754.
Fakhrutdinov, M., S. Rashidova and R. Tillaev. 2020. Application of “uzchitan” preparation as the growth of citrus plant regulator. International Journal of Scientific and Technology Research, 9: 1188-1190.
Garibova LV, L. S. 2005. Bases of mycobiology: Morphology and systematic for fungi and ribosomal organisms. Molecules: 80-89.
González-Candelas, L., S. Alamar, P. Sánchez-Torres, L. Zacarías and J. F. Marcos. 2010. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC plant biology, 10: 1-17.
Green, H., J. Larsen, P. A. Olsson, D. F. Jensen and I. Jakobsen. 1999. Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Applied and Environmental Microbiology, 65: 1428-1434.
Guarnaccia, V. and P. W. Crous. 2017. Emerging citrus diseases in Europe caused by species of Diaporthe. IMA fungus, 8: 317-334.
Hammond-Kosack, K., B. Staskawicz, J. Jones and D. Baulcombe. 1995. Functional expression of a fungal avirulence gene from a modified potato virus X genome. Plant Microbe Intraction, 8: 181-185.
Harman, G. E. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant disease, 84: 377-393.
Harman, G. E., C. R. Howell, A. Viterbo, I. Chet and M. Lorito. 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2: 43-56.
Hernández-Montiel, L. and J. Ochoa. 2007. Fruit rot caused by Penicillium italicum on lemon (Citrus aurantifolia) in Colima, México. Plant disease, 91: 767-767.
Hoffmann, C. A., L. F. B. Chagas, D. P. Da Silva, A. F. C. Junior and G. N. Scheidt. 2015. Potencial de antagonismo de isolados de Trichoderma sp. contra o isolados de Fusarium sp., in vitro. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 10: 37.
Howell, C. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant disease, 87: 4-10.
Hsuan, H. M., B. Salleh and L. Zakaria. 2011. Molecular identification of Fusarium species in Gibberella fujikuroi species complex from rice, sugarcane and maize from Peninsular Malaysia. International Journal of Molecular Sciences, 12: 6722-6732.
Inbar, J. and I. Chet. 1994. A newly isolated lectin from the plant pathogenic fungus Sclerotium roltsii: purification, characterization and role in mycoparasitism. Microbiology, 140: 651-657.
Karimov HK, T. B., Azimova NSh, Hamidova Kh.М. 2020. Antagonistic effect of fungi of Trichoderma species on phytopathogens. . Proceedings from Science Academy. Tashken, 5: 85-93.
Kazakov, VS. 2017. Decision on the base of MALDI-TOF mass-spectrometry for express identification of microorganisms.
Khanchouch, K., A. Pane, A. Chriki and S. O. Cacciola. 2017. Major and emerging fungal diseases of citrus in the Mediterranean Region. Citrus Pathology, 1: 66943.
Kulyan RV, S. L., Rakhmangulov RS. 2017. Genetic resources of citrus in Russia, the Ukraine and Belarussia: storage and use. Vavilov journal of genetics and breeding. Letters to Vavilov Journal of Genetics and Breeding, 21: 506-514.
Leila, T, M. E. A. D., Nassira Gaouar, Bouayad Samira, and BoufeldjaTabti. 2014. Antioxidant and Antifungal Activity of Extracts of the Aerial Parts of Thymus capitatus (L.) Hoffmanns Against Four Phytopathogenic Fungi of Citrus sinensis. Journal of Natural Pharmacutical Products, 9: 49-54.
Litvinov, МА. 1967. Determiner of microscopic soil fungi. Leningrad. Nauka.106: 303.
Lorito, M. 1998. Chitinolytic enzymes and their genes. Trichoderma and Gliocladium, 2: 73-99.
Mandels, M., F. W. Parrish and E. T. Reese. 1962. Sophorose as an inducer of cellulase in Trichoderma viride. Journal of Bacteriology, 83: 400-408.
Moraes Bazioli, J., J. R. Belinato, J. H. Costa, D. Y. Akiyama, J. G. d. M. Pontes, K. C. Kupper, F. Augusto, J. E. de Carvalho and T. P. Fill. 2019. Biological control of citrus postharvest phytopathogens. Toxins, 11: 460.
Ochoa, J., L. Hernández-Montiel, H. Latisnere-Barragán, J. L. de La Luz and C. P. Larralde-Corona. 2007. Aislamiento e identificación de hongos patógenos de naranja Citrus sinensis l. osbeck cultivada en baja california sur, méxico isolation and identification of pathogenic fungi from orange Citrus sinensis l. osbeck cultured in baja california sur, mexico. Cyta. Journal of Food, 5: 352-359.
Palou, L., J. Usall, J. L. Smilanick, M. J. Aguilar and I. Vinas. 2002. Evaluation of food additives and low‐toxicity compounds as alternative chemicals for the control of Penicillium digitatum and Penicillium italicum on citrus fruit. Pest management science, 58: 459-466.
Peever, T., Y. Canihos, L. Olsen, A. Ibanez, Y.-C. Liu and L. Timmer. 1999. Population genetic structure and host specificity of Alternaria spp. causing brown spot of Minneola tangelo and rough lemon in Florida. Phytopathology, 89: 851-860.
Pereira, C. d. O. F. 2014. Estudo da patogenicidade e controle biológico de fusarium sp. com trichoderma sp.
Pidoplichko, N.М. And A.A. Milko. 1971. Atlas of mucoral fungi. Academy of science of the Ukraine, Institute of Microbiology and Virusology named after D.К. Zobolotnoy. Kiev.
Rosado, I. V., M. Rey, A. C. Codón, J. Govantes, M. A. Moreno-Mateos and T. Benítez. 2007. QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genetics and Biology, 44: 950-964.
Safdarpour, F. and G. Khodakaramian. 2019. Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with Verticillium dahliae under in-vitro and in-vivo conditions. Biological Journal of Microorganism, 7: 77-90.
Sánchez-Torres, P. and J. J. Tuset. 2011. Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest biology and technology, 59: 159-165.
Sandoval-Contreras, T., S. Marín, A. Villarruel-López, A. Gschaedler, L. Garrido-Sánchez and F. Ascencio. 2017. Growth modeling of Aspergillus niger strains isolated from citrus fruit as a function of temperature on a synthetic medium from lime (Citrus latifolia T.) Pericarp. Journal of food protection, 80: 1090-1098.
Sivasithamparam K. and Ghisalberti E L. 1998. Trichoderma and Gliocladium. 1 (eds Kubicek, C. P. & Harman, G. E.) Taylor and Francis, London. 1998: 139–191.
Spadaro, D. and S. Droby. 2016. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47: 39-49.
Srinivasa, N., T. P. Devi, S. Sudhirkumar, D. Kamil, J. L. Borah and N. Prabhakaran. 2014. Bioefficacy of Trichoderma isolates against soil-borne pathogens. African Journal of Microbiology Research, 8: 2710-2723.
Tafinta, I., K. Shehu, H. Abdulganiyyu, A. Rabe and A. Usman. 2013. Isolation and identification of fungi associated with the spoilage of sweet orange (Citrus sinensis) fruits in Sokoto State. Nigerian Journal of Basic and Applied Sciences, 21: 193-196.
Tepper, E., V. Shil’nikova and G. Pereverzeva. 2005. Practicum on microbiology. Moscow: Bustard.
Trouillas, F. P., J. R. Urbez-Torres and W. D. Gubler. 2010. Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia, 102: 319-336.
Tsuge, T., Y. Harimoto, K. Akimitsu, K. Ohtani, M. Kodama, Y. Akagi, M. Egusa, M. Yamamoto and H. Otani. 2013. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS microbiology reviews, 37: 44-66.
Turaeva BI, K. K., Eshdavlatova G, Kamolov LS. 2019. Low-molecular metabolites of fungus Trichoderma harzianum Uz CF-55. KarSU news. Karshi, 1: 28-31.
Turaeva, B., A. Soliev, F. Eshboev, L. Kamolov, N. Azimova, H. Karimov, N. Zukhritdinova and K. Khamidova. 2020. The use of three fungal strains in producing of indole-3-acetic acid and gibberelllic acid. Plant Cell Biotechnology and Molecular Biology, 21: 32-43.
Turaeva, B., N. Zukhritdinova, X. Karimov, K. M. Khamidova and Z. Ahmedova. 2016. The antagonistic activity of fungus T. harzianum UZ CF–55 against some phytopathogens. Evropean Jornal of Biomedical and Pharmaceutical Sciences, 3: 70-72.
Vafaie A, B. B., Jafarie A. 2018. Effect of Streptomyces isolates from tomato rhizosphere on Fusarium oxysporum sp. radicis lycopersici. 23th Iranian Plant Protection Congress: 874.
Vega, B. and M. M. Dewdney. 2014. QoI-resistance stability in relation to pathogenic and saprophytic fitness components of Alternaria alternata from citrus. Plant disease, 98: 1371-1378.
Wells, H. 1988. Trichoderma as a biocontrol agent. Biocontrol of plant diseases. I: 71-82.
Zhang, T., Q. Cao, N. Li, D. Liu and Y. Yuan. 2020. Transcriptome analysis of fungicide-responsive gene expression profiles in two Penicillium italicum strains with different response to the sterol demethylation inhibitor (DMI) fungicide prochloraz. BMC genomics, 21: 1-16.
DOI: https://doi.org/10.33866/phytopathol.033.02.0724
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 jaloliddin jaloliddin shavkiev
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Pakistan Journal of Phytopathology ISSN: 1019-763X (Print), 2305-0284 (Online). © 2013 Pak. J. Phytopathol. All rights reserved. |