IDENTIFICATION OF THE MAIN PATHOGENIC FUNGUS OF ROOT ROT OF DATE PALM OFFSHOOTS (PHOENIX DICTYLIFERA L.), AND THE ANTAGONISTIC EFFECT OF TRICHODERMA HARZIANUM IN VITRO

Naji Jassim, Mahmood O. Jaaafer

Abstract


Root rot is a significant underground disease in date palms (Phoenix dactylifera L.) caused by pathogenic soil-borne fungus Fusarium oxysporum. Polymerase chain reaction (PCR) amplification was performed, followed by analysis of the sequences of nitrogen bases of the products using the program BLAST (Basic Local Alignment Search Tool). The results revealed that most pathogenic isolates were belonging to F. oxysporum, F. proliferatum S1, F. proliferatum S2, and F. fujikuroi. The selected isolates of Fusarium spp. were sequenced. The result of a pathogenicity assay shows that all the assayed isolated fungi were pathogenic to date palm plantlets at different percentages, and the main causative pathogenic fungus was F. oxysporum with disease severity (DS) of 96% and disease incidence (DI) of 96.6%. An attempt was made to find the most appropriate bioagents that can protect date palm offshoots (P. dactylfera L.) from certain soil-borne fungal diseases. The antifungal efficacy of Trichoderma harzianum was tested in vitro, where it inhibited mycelial radial growth of F. oxysporum by 87% on PDA medium. The results showed there was no reduction in mycelial growth of T. harzianum at all the different concentrations of NaCl tested under in vitro growth conditions compared with control concentrations (0 dSm).


Full Text:

PDF

References


Abedalred, E. M., W. M. Ismail1, R. G. Abdulmoohsin and M. A. J. Al-Karhi. 2019. First molecular identification of Fusarium fujikuroi causing pollen rot of palm trees (Phoenix dactylifera L.) in Iraq and evaluation efficacy of some nanoparticles against it. International Conference on Agricultural Sciences IOP Conference. Series: Earth and Environmental Science 388: 12007.

Ahmed, M. F. A. 2018. Management of date palm root rot diseases by using some biological control agents under organic farming system. Novel Research in Microbiology Journal, 2: 37-47.

Ahmed, M. F. A. 2013. Studies on non-chemical methods to control some soil borne fungal diseases of bean plants Phaseolus vulgaris L. Ph.D. Thesis. Faculty of Agriculture, Cairo University, Egypt.

Alwahshi. K. J., E. I. Saeed, A. Sham, A. A. lblooshi, M. M. Alblooshi, K. A. El-Tarabily and S. F. AbuQamar. 2019. Molecular identification and disease management of date palm sudden decline syndrome in the United Arab Emirates. International Journal of Molecular Sciences, 20: 923-929.

Arafat, K. H., A. M. Mohamad and S. Elsharabasy. 2012. Biological control of date palm root-rots diseases using Egyptian isolates of Streptomyces. Research Journal of Agriculture and Biological Sciences, 8: 224–230.

Baraka, M. A., F. M. Radwan and K. H. Arafat. 2011. Survey and identification of major fungi causing root rot on date palm and their relative importance in Egypt. Journal of Biological and Environmental, 6: 319-337.

Benitez, T., A. M. Rincon, M. C. Limon and A. C. Codon. 2004. Biocontrol mechanisms of Trichoderma strains. International Journal of Microbiology, 7: 249-260.

Booth, C. 1985. The genus Fusarium. Common Wealth Mycological Institute, Kew, UK. pp. 237.

Chandel, S. and R. Deepika. 2010. Recent advances in management and control of Fusarium yellows in Gladiolus species. Journal of Fruit Ornamental Plant Research. 18: 361–380.

Coleman, J. J. 2016.The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Molecular of Plant Pathology. 17:146–158.

Dean, R., J. A. L. Van Kan, Z. A. Pretorius, K. E. Hammond-Kosack, A. Di Pietro and P.D. Spanu. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology. 13: 414–430.

Djerbi, M. 1983. Diseases of the date palm (Phoenix dactylifera L.). FAO Regional Project for Palm and Dates Research Centre. East and North Africa. pp. 106.

Dix, N.J. and J. Webster. 1995. Fungal Ecology. 1st edition. Chapman and Hall, London.

EL-Morsi, M. E. A., M. F. Abdel-Monaim and E. F. S. Ahmad. 2015. Management of root rot and wilt diseases of date palm off shoots using certain biological control agents and its effect on growth parameters in the New Valley Governorate, Egypt. Journal of Phytopathology and Pest Management. 2: 1-11.

Garrett, S. D. 1956. Biology of root-infecting fungi. Cambridge University Press, New York, USA, pp. 293.

Harman, G. E. 2000. Myths and dogmas of bio control: Changes in the perceptions derived from research on Trichoderma harzianum T-22. Plant Diseases, 84: 377-393.

Ilgen, P., F. Maier and W. Schäfer. 2008. Trichothecenes and lipases are host-induced and secreted virulence factors of Fusarium graminearum. Cereal Research Communications, 36: 421-428.

Killham, K. 1994. Soil Ecology (1), Cambridge University Press, United Kingdom.

Kumar K., K. Manigundan and N. Amaresan. 2016. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology, 56: 1-10.

Kumar, S. 2013. Trichoderma: a biological control weapon for managing plant diseases and promoting sustainability. International Journal of Agricultural Sciences and Veterinary Medicine, 1: 106–121.

Liu, L., J. W. Kloepper and S. Tuzun. 1995. Introduction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathalogy, 85: 695–698.

Maloy, O. C. 1993. Plant Disease Control: Principles and Practice. John Wiley and Sons Inc, New York, USA, pp. 346.

Maitlo, W.A., G. S. Markhand, A. Abul-Soad, A. M. Lodhi and M. A. Jatoi. 2013. Chemical control of sudden decline disease of date palm (Phoenix dactylifera L.) in Sindh, Pakistan. Pakistan Journal of Botany, 45: 7–11.

Mausam, V., S. Brar, R. Tyagi, R. Surampalli and J. Valero. 2007. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal. 37: 1-20.

Medeiros, D., G. Marcelino, D. Albuquerque, A. Viana and K. Silva. 2012. Ethanolic extract of Senna alata in control of Fusarium oxysporum responsible for Fusarium wilt in melon Revista Brasileira de Engenharia Agrícola e Ambiental, 16: 1166-1170.

Muthu, C., M. Ayyanar, N. Raja and S. Ignacimuthu. 2006. Medicinal plants used by traditional healers in Kanchipuram district of Tamil Nadu, India. Journal of Ethnobiology and Ethnomedicine, 2: 43-49.

Naher L, U. Yusuf, A. Ismail and K. Hossain. 2014. Trichoderma spp. A bio-control agent for sustainable management of plant diseases. Pakistan Journal of Botany, 46: 1489-1493.

O’Donnell, K., H. C. Kistler, B. K. Tacke and H. H. Casper. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of National Acadmy of Sciences of United States of America, 97: 7905–7910.

Pal, K. K. and B. M. Gardener. 2006. Biological control of plant pathogens. The Plant Health Instructor, 1-25.

Poosapati, S., P. D. Ravulapalli, N. Tippirishetty, D. K. Vishwanathaswamy and S. Chunduri. 2014. Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. Springer Plus, 3: 641-645.

Puyam, A. 2016. Advent of Trichoderma as a bio-control agent. A Review Journal of Applied and Natural Science, 8: 1100-1109.

Rana, A., M. Sahgal and B. N. Johri. 2017. Fusarium oxysporum: genomics, diversity and plant–host interaction. Developments in fungal biology and applied mycology. Springer, New York, USA, pp. 159–199.

Rudresh, D. L., M. K. Shivaprakash, and R. D. Prasad. 2005. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer arietinum L.). Applied Soil Ecology, 28: 139-146.

Sneh, B., L. Burpee and A. Ogoshi. 1991. Identification of Rhizoctonia species. APS Press, St. Paul, MN, USA, pp. 133.

Sood, M., D. Kapoor, V. Kumar, M. S. Sheteiwy, M. Ramakrishnan, M. Landi, F. Araniti and A. Sharma. 2020. Trichoderma: The “secrets”of a multitalented biocontrol agent. Plants, 9: 762-766.

Stanis, C. S., B. K. Song, T. H. Chua, Y. L. Lau and J. Jelip. 2016. Evaluation of new multiplex PCR primers for the identification of Plasmodium species found in Sabah. Turkish Journal of Medical Sciences, 46: 207-218.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6. Molecular Biology and Evolution, 30: 2725-2729.

White, T. J., T. Bruns, S. Lee and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, Inc; New York, USA.

Xue Jing, W., J. Yong Sheng, L. Wei, T. BaoSheng and W. You Nian. 2011. Identification and inhibitory effects of antagonistic bacteria against strawberry root rot (Fusarium oxysporum). Acta Horticulturae Sinica, 38: 1657-1666.

Yedidia, I., M. Shoresh, Z. Kerem, N. Benhamou, Y. Kapulnik and I. Chet. 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. Lachrymans in cucumber by Trichoderma sperellum(T203) and accumulation of phytoalexins. Appliedand Environmental Microbiology, 69: 7343-7353.

Zahran, Z. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility of Soils, 25: 211–223.




DOI: https://doi.org/10.33866/phytopathol.035.01.0856

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Naji Jassim

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.