CITRUS TRISTEZA VIRUS: ITS RESEARCH STATUS AND FUTURE PROSPECTS IN PAKISTAN

Khalid Naveed, Muhammad R. Shafiq, Ahmed Raza

Abstract


 

Citrus tristeza virus (CTV) produces the most damaging disease of citrus worldwide and is a continuous threat to the citrus industry. It is primarily spread through infected root-stock and brown citrus aphid in a semi-persistent manner. Infected trees produce small sized and poor quality fruit, and in severe cases tree dies. Sour orange rootstock is highly susceptible to CTV. Several mild and severe strains have been identified which produce from invisible- to- visible symptoms in diseased plants. Existence of multiple CTV strains in nature is a challenge for CTV management. Symptomless infection in certain citrus species results in the inoculum build up and further spread of the disease. Breeding for CTV resistance genes is a long and time-consuming process that takes 8-10 years before a CTV resistant variety is developed. Genomic manipulation of CTV genome is challenging due to its larger genome size. Modern biotechnological tools can be used to control this disease and to prevent its spread in the future. However, CTV offers a valuable research tool for its role as a stable marker in genetic transformation of plants. This review highlights the challenges in developing resistant citrus cultivars against CTV and future prospects of CTV and is an update to the research status of CTV.


Keywords


Citrus tristeza virus; resistance breeding; disease management; genetic transformation.

Full Text:

PDF

References


Ahmed, W. and R. Azmat. 2019. Citrus: an ancient fruits of promise for health benefits. Citrus-Health Benefits and Production Technology, 19-30.

Albiach-Marti, M. R., J. W. Grosser, S. Gowda, M. Mawassi, T. Satyanarayana, S. Garnsey and W. O. Dawson. 2004. Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Molecular Breeding, 14:117-128.

Albiach-Marti, M. R., C. Robertson, S. Gowda, S. Tatineni, B. Belliure, S. M. Garnsey, S. Y. Folimonova, P. Moreno and W. O. Dawson. 2010. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3′‐terminal region of the viral genome. Molecular Plant Pathology, 11: 55-67.

Ahmad, B., M. Anwar, H. Badar, M. Mehdi and F. Tanveer. 2021. Analyzing export competitiveness of major fruits and vegetables of Pakistan: an application of revealed comparative advantage indices. Pakistan Journal of Agricultural Sciences, 58(2):719-730.

Aman, R., Z. Ali, H. Butt, A. Mahas, F. Aljedaani, M. Z. Khan, S. Ding and M. Mahfouz. 2018. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biology, 19: 1.

Ammara, U. E., S. Mansoor, M. Saeed, I. Amin, R. W. Briddon and A. M. Al-Sadi. RNA interference-based resistance in transgenic tomato plants against Tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite. Virology Journal, 12: 38.

Atta, S., U. U. D. Umar, M. A. Bashir, A. Hannan, A. Rehman, S. A. H. Naqvi and C. Zhou. 2019. Application of biological and single-strand conformation polymorphism assays for characterizing potential mild isolates of Citrus tristeza virus for cross protection. AMB Express, 9: 174.

Belhaj, K., A. Chaparro-Garcia, S. Kamoun, N. J. Patron and V. Nekrasov. 2015. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 32: 76–84.

Baltes, N. J., A. W. Hummel, E. Konecna, R. Cegan, A. N. Bruns, D. M. Bisaro and D. F. Voytas. 2015. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants, 1: 1-4.

Dawson, W. O., S. M. Garnsey, S. Tatineni, S. Y. Folimonova, S. J. Harper and S. Gowda. 2013. Citrus tristeza virus-host interactions. Frontiers in Microbiology, 4: 88.

Duan, C. G., C. H. Wang and H. S. Guo. 2012. Application of RNA silencing to plant disease resistance. Silence, 3: 5.

Endo, T., H. Fujii, M. Omura and T. Shimada. 2020. Fast-track breeding system to introduce CTV resistance of trifoliate orange into citrus germplasm, by integrating early flowering transgenic plants with marker-assisted selection. BMC Plant Biology, 20: 224.

Fagoaga, C., C. López, A. H. D. Mendoza, P. Moreno, L. Navarro, R. Flores and L. Peña. 2006. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology, 60: 153–165.

FAO. 2020. Citrus Fruit Fresh and Processed. Statistical Bulletin. Food and Agriculture Organization of the United Nations, Rome, Italy.

FAOSTAT. 2018. FAO Production Yearbook, FAO, Rome, Italy.

Fraser, P. A. and W. R. Jarmain. 1953. Vibrational transition probabilities of diatomic molecules: I. Proceedings of the Physical Society. Section A, 66(12):1145.

Gmitter, F. G., S. Y. Xiao, S. Huang, X. L. Hu, S. M. Garnsey and Z. Deng. 1996. A localized linkage map of Citrus tristeza virus resistance gene region. Theoretical and Applied Genetics, 92: 688-695.

Graham, J. H., T. R. Gottwald, J. Cubero and D. S. Achor. 2004. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5: 1–15.

Garnsey, E. and P. Heffernan. 2005. High‐technology clustering through spin‐out and attraction: The Cambridge case. Regional Studies, 39(8):1127-1144.

Geng, S., H. Sohail, H. Cao1, J. Sun, Z. Chen, L. Zhou, W. Wang, R. Ye, L.Yang and Z. Bie. 2022. An efficient root transformation system for CRISPR/Cas9-based analyses of shoot-root communication in cucurbit crops. Horticulture Research, 9: uhab082.

Hajeri, S., N. killiny, C. El-Mohtar, W. O. Dawson and S. Gowda. 2014. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). Journal of Biotechnology, 176: 42-29.

Hameed, A., S. S. A. Zaidi, M. N. Sattar, Z. Iqbal and M. N. Tahir. 2019. CRISPR technology to combat plant RNA viruses: A theoretical model for Potato virus Y (PVY) resistance. Microbial Pathogenesis, 133: 103551.

Iqbal, M., Y. Tao, S. Xie, Y. Zhu, D. Chen, X. Wang, L. Huang, D. Peng, A. Sattar, M. A. B. Shabbir, H. I. Hussain, S. Ahmed and Z. Yuan. 2016. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological procedures online, 18:1-18.

Jia, H. and N. Wang. 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE, 9: e93806.

Jia, H., Y. Zhang, V. Orbovic, J. Xu, F. White, J. Jones and N. Wang. 2016. Genome editing of the disease susceptibility geneCsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15: 817-823.

Ji, X., H. Zhang, Y. Zhang, Y. Wang and C. Gao. 2015. Establishing a CRISPR-Cas-like immune system conferring DNA virus resi0stance in plants. Nature Plants, 1: 15144.

Karasev, A. V. 2000. Genetic Diversity and Evolution of colesteroviruses. Annual Review of Phytopatholog, 38: 293-324.

Khalid, A., Q. Zhang, M. Yasir and F. Li. 2017. Small RNA based genetic engineering for plant viral resistance: application in crop protection. Frontiers in Microbiology, 8.

Krueger, K. P., B. G. Felkey and B. A. Berger. 2003. Improving adherence persistence: A review assessment of interventions description of steps toward a national adherence initiative. Journal of the American Pharmacists Association, 43: 668-679.

Lindbo, J. A. and W. G. Dougherty. 2005. Plant pathology and RNAi: a brief history. Annual Review of Phytopathology, 43: 191–204.

Lu, R., A. Folimonov, M. Shintaku, W. X. Li, B. W. Falk, W. O. Dawson and S. W. Ding. 2004. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 101: 15742–15747.

Mahas, A., R. Aman and M. Mahfouz. 2019. CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biology, 20: 263.

Ma, X., Q. Zhu, Y. Chen and Y. G. Liu. 2016. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant, 9: 961–974.

Mestre, P. F., M. J. Asíns, E. A. Carbonell and L. Navarro. 1997. New gene(s) involved in the resistance of Poncirus trifoliata (L.) Raf. to Citrus tristeza virus. Theoretical and Applied Genetics, 95: 691-695.

Montague, M. J., G. Li, B. Gandolfi, R. Khan, B. L. Aken, S. M. Searle and W. C. Warren. 2014. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proceedings of the National Academy of Sciences, 111: 17230-17235.

Ma, X. and E. Hovy. 2016. End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv preprint arXiv:1603.01354.

Naqvi, A. R., J. B. Fordham and S. Nares. 2015. miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells. The Journal of Immunology, 194: 1916-1927.

Naseem, S., S. Mahmood and Z. Ali. 2016. Occurrence of Citrus tristeza virus in Pakistan: A GIS based combining host distribution and disease reports. Pakistan Journal of Agricultural Sciences, 53.

Naz, S., R. Siddiqi, S. Ahmad, S. A. Rasool and S. A. Sayeed. 2007. Antibacterial activity directed isolation of compounds from Punica granatum. Journal of food science, 72: 341-345.

Obbard, D. J., K. H. Gordon, A. H. Buck and F. M. Jiggins. 2009. The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society B: Biological Sciences, 364: 99-115.

Peng, A., S. Chen, T. Lei, L. Xu, Y. He, L. Wu, L. Yao and X. Zou. 2017. Engineering canker-resistant plants through CRISPR/Cas9- targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal, 15: 1509–1519.

Roberts, P.D., R.J. McGovern, R.F. Lee and C.L. Niblett. 2001. Tristeza. Florida Cooperative Extension Service, University of Florida, Institute of Food and Agricultural Sciences Gainesville, pp. 10.

Roistacher, C. N. and M. Bar-Joseph. 1987. Aphid transmission of citrus tristeza virus: A review. Phytophylactica, 19: 163-167.

Rai, M. 2006. Refinement of the Citrus tristeza virus resistance gene (CTV) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Molecular Biology, 61. 399–414.

Rubio, L., A. Arruabarrena, M. Salvo, M. Castells, A. Bertalmío, L. Hernández-Rodríguez, M. J. Benítez-Galeano, D. Maeso, R. Colina and F. Rivas. 2023. Biological and molecular characterization of a resistance-breaking isolate of citrus tristeza virus from Uruguay and its effects on Poncirus trifoliata growth performance. Archives of Virology, 168:123.

Singh, B., J. P. Singh, A. Kaur and N. Singh. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, 132:109114.

Sun, L., Nasrullah, F. Ke, Z. Nie, P. Wang and J. Xu. 2019. Citrus Genetic Engineering for Disease Resistance: Past, Present and Future. International Journal of Molecular Sciences, 20: 5256.

Tabassum, B., Z. Sher, M. Tariq, A. Khan, N. Shahid, M. Bilal and M. Ramzan. 2013. Experimental Agriculture & Horticulture Overview of Acquired Virus Resistance in Transgenic Plants 2. Natural Defense of Plants Against Viruses. pp. 12–28.

Xu, Q., L. Chen, X. Ruan, D. Chen, A. Zhu, C. Chen, D. Bertrand, W. Jiao, B. Hao, M. P. Lyon, J. Chen, S. Gao, F. Xing, H. Lan, J. Chang, X. Ge, Y. Lei, Q. Hu, Y. Miao, L. Wang, S. Xiao, M. K. Biswas, W. Zeng, F. Guo, H. Cao, X. Yang, X. Xu, Y. Cheng, J. Xu, J. Liu, O. J. Luo, Z. Tang, W. Guo, H. Kuang, H. Zhang, M. L. Roose, N. Nagarajan, X. Deng and Y. Ruan. 2013. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 45: 59–66.

Yang, L., F. Machin, S. Wang, E. Saplaoura and F. Kragler. 2023. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nature Biotechnology, 41: 958–967.

Zaidi, S. S. A., M. Tashkandi, S. Mansoor and M. M. Mahfouz. 2016. Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance. Frontiers in Plant Science, 7: 1673.

Zhang, T., Q. Zheng, X. Yi, H. An, Y. Zhao, S. Ma and G. Zhou. 2018. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnology Journal, 16: 1415–1423.

Zhang, T., Y. Zhao, J. Ye, X. Cao, C. Xu, B. Chen, H. An, Y. Jiao, F. Zhang, X. Yang and G. Zhou. 2019. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnology Journal, 17: 1185–1187.




DOI: https://doi.org/10.33866/phytopathol.035.02.0873

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Khalid Naveed, , Muhammad R. Shafiq, Ahmed Raza

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.