BIOLOGICAL CONTROL OF ROOT-KNOT NEMATODE IN TOMATO PLANTS THROUGH YEAST ISOLATES

Ramadan A. Bakr, Alaa A. Nafea, Magdy E.S. Mahdy, El-Shawadfy M. Mousa

Abstract


In Egypt, root knot nematodes (RKN) were shown to be significant plant parasites with a variety of host plants. Under laboratory and greenhouse circumstances, the current study examines the antagonistic effects of four distinct yeast isolates on Meloidogyne spp. egg hatching and larval mortality. In comparison to the control, the results showed that Pichia guilliermondii ATCC 9058 had the highest egg hatching inhibition and larval mortality, which were 93 and 100%, respectively, after 168 hours of exposure. Pichia guilliermondii ATCC 9058 at 4% of soil weight, one-week pre nematode inoculation achieved the highest reduction in nematode parameters i.e., number of galls, egg masses, females, and number of juveniles (J2s)/250g soil, with 89.6, 90, 88.7 and 90%, respectively., followed by S. cerevisiae at 4% of soil weight, one-week pre nematode inoculation application, with 84.4, 88.3, 88.4 and 85.3%, respectively. Used yeast isolates could therefore be a useful biocontrol tool for plant parasitic nematodes.


Keywords


Root-Knot Nematodes, Meloidogyne spp., Biological Control, Yeast

Full Text:

PDF

References


Abbas C. A. and A. A. Sibirny.2011. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiology and molecular biology reviews, 75:321–360.

Abdel-Baset, S. H., A. E. Khalil and S. Mohamed. 2022. Plant-Parasitic Nematodes Associated with Certain Fruit Trees and Vegetable Crops in the North Eastern Egypt. Egyptian Journal of Agronematology, 21: 110-121.

Abd-Elgawad, M. M. and H. Z. Aboul-Eid. 2001. Effects of oxamyl, insect nematodes and Serratia marcescens on a polyspecific nematode community and yield of tomato. Egyptian Journal of Agronematology, 5:79-89.

Abd-Elgawad, M. M. M. 2021. Biological control of nematodes infection eggplant in Egypt. Bulletin of the National Research Centre, 45: 1-9.

Abd-Elgawad, M. M. M. 2014. Yield losses by phytonematodes: challenges and opportunities with special reference to Egypt. Egyptian Journal of Agronematology, 13:75–94.

Abdel-lateif, K. S. and R. A. Bakr. 2018. Internal transcribed spacers (ITS) based identification of Trichoderma isolates and biocontrol activity against Macrophomina phaseolina, Aspergillus niger and Meloidogyne incognita. African Journal of Microbiology Research, 12: 715-722.

Abokorah, M. S. and A. M. Fathalla. 2022. The nematicidal efficacy of fulvic acid, yeast fungus (Saccharomyces cerevisiae) and L-tryptophan on plant parasitic nematodes, growth, and yield of banana plants. Egyptian Journal of Crop Protection, 17: 27-37.

Abou-Zaid, M. 1984. Biochemical Studies on Fooder Yeast. Ph.D. thesis, Faculty of Agriculture Cairo University, Egypt.

Agaba, T. A. and B. Fawole. 2016. Comparative efficacy of Chromolaena odorata and Annona senegalensis for the management of Meloidogyne incognita on pepper (Capsicum spp.). Indo-American Journal of Agricultural and Veterinary Sciences, 4:1-11.

Al-Hendy, M., R. A. Bakr, M. E. Mahdy and E. M. Mousa. 2021. Ecofriendly management of root-knot nematodes on eggplant using compost. Egyptian Journal of Crop Protection, 16: 1-19.

Arwiyanto, T. 2014. Biological control of bacterial wilt in south-east Asia. Jurnal Perlindungan Tanaman Indonesia, 18: 55-64.

Azeredo, L. A. I., E. A. T. Gomes, L. C. Mendonça-Hagler and A. N. Hagler. 1998. Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brazil. International Microbiology, 1: 205-208.

Bakr, R. A., M. E. Mahdy, E. M. Mousa and M. N. Alhendy. 2022a . Spent Mushroom as Eco-friendly Management Strategy of Root-knot Nematodes, Meloidogyne spp. Infecting Eggplant. Egyptian Journal of Crop Protection, 17 (1): 15-26

Bakr, R. A., M. E. Mahdy and E. M. Mousa. 2011. A survey of root-knot and citrus nematodes in some new reclaimed lands in Egypt. Pakistan Journal of Nematology, 29: 165-170.

Bakr, R. A., M. E. Mahdy and E. M. Mousa. 2020. Survey of root-knot nematodes Meloidogyne spp. associated with different economic crops and weeds in Egypt. Egyptian Journal of Crop Protection, 15: 1-14.

Bakr, R. A. and H. A. Ketta. 2018. Nematicidal potential of some botanical products against Meloidogyne incognita infecting Eggplant. Indian Journal of Nematology, 48: 203-211.

Bakr, R.A., A. M. Abdelall and M. F. Salem. 2022b. Potential of different compost types in enhancement physiological and biochemical changes and control of Meloidogyne javanica in tomato plants. Egyptian Journal of Crop Protection, 17 :38-54.

Barker, K. R. 1985. Nematode extraction and bioassays. In: Gads, K. R.Barker, C. C. Carter & J.N. Sasser, eds., An Advanced Treatise on Meloidogyne, North Carolina State University, 11: 19-38.

Bird, A. F. and M. A. McClure. 1976. The Tylenchid (Nematoda) eggshell: structure, composition and permeability. Parasitology, 72:19–28.

Broesh, S. 1954. Colorimetric assay of phenoloxidase. Bulletin de la Société de chimie biologique, 36: 711 – 713.

Chanchaichaovivat, A., B. Panijpan and P. Ruenwongsa. 2008. Putative modes of action of Pichia guilliermondii strain R13 in controlling chilli anthracnose after harvest. Biological Control. 47:207–215.

Daykin, M. E. and R. S. Hussey. 1985. Staining and histopathological techniques in nematology. Pp. 39-48 in Barker, K. R.; C. C. Carter and J. N. Sasser, Eds. An advanced treatise in Meloidogyne, Vol. II Methodology, Raleigh: North Carolina State University Graphics.

Deng, B., X. Jin, Y. Yang, Z. Lin and Y. Zhang. 2014. The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Plant growth regulation,72: 269–277.

Elkhishin, E. A. 2020. An economic study on tomato export competitiveness in Egypt. Arab Universities Journal of Agricultural Sciences, 28:367-382.

El-Nuby A. S. M. 2021. Effect of some amino acids and Yeast on root-knot disease on tomato plants. Egyptian Journal of Agronematology, 20:17-33.

El-Qurashi, M. A., A. M. I. El-Zawahry, K. M. H. Abd-El-Moneem and M. I. Hassan. 2019. Occurrence, population density and biological control of root-knot nematode, Meloidogyne javanica Infecting Pomegranate Orchards in Assiut Governorate, Egypt. Assiut Journal of Agricultural Sciences, 50: 176-189.

El-Sagheer, A., A. El-Mesalamy, A. M. Anany and N. Mahmoud. 2021. Nematicidal properties of some yeast culture filtrates against Meloidogyne javanica infecting squash plants (in vitro and in vivo). Pakistan Journal of Nematology, 39: 111-121.

El-Sherif, A. G., S. B. Gad, A. M. Khalil and R. H. Mohamedy. 2015. Impact of four organic acids on Meloidogyne incognita infecting tomato plants under greenhouse conditions. Global Journal of Biology, Agriculture and Health Sciences, 4: 94-100.

FAO. 2020. Food and Agriculture Organization of the United Nations. FAOSTAT database collections.

Fehrman, H. and A. E. Dimond. 1967. Peroxidase activity and Phytophthora resistance in different organs of the potato plant. Phytopathology, 57: 69-72.

Ferguson, J. J., W. T. Avigne, L. H. Alen, and K. E. Koch. 1987. Growth of CO2 enriched sour orange seedling treated with Gibberellic and Cytokinins. Proceeding of Florida State Horticulture Society, 99: 3739

Fialho, M. B., R. Bessi, M. M. Inomoto and S. F. Pascholati. 2012. Nematicidal effect of volatile organic compounds (VOCs) on the plant parasitic nematode Meloidogyne javanica. Summa Phytopathologica, 38: 152-154.

Fleming, R. and A. Retnakaram. 1985. Evaluating single treatment data using Abbot’s formula with reference to insecticides. Journal of Economic Entomology, 78: 1179– 1181.

Gastaldi, G., U. Laforenza, D. Gasirola, G. Ferrari, M. Toscoand G. Rindi. 1999. Energy depletion differently affects membrane transport and intracellular metabolism of riboflavin taken up by isolated rat enterocytes. The Journal of Nutrition, 129: 406–409.

Goodey, J. B. 1957. Laboratory methods for work with plant and soil nematodes. Technical Bulletin, 2: 47.

Gortari, M. C. and R. A. Hours. 2008. Fungal chitinases and their biological role in the antagonism onto nematode eggs: a review. Mycological Progress, 7:221–238.

Hamza, A. M., O. M. Abd El-Kafie, A. H. Nour El-Deen and M. M. Abd El-Baset. 2013. Improving carnation resistance to root-knot nematode infection under greenhouse conditions. Journal of Plant Production, 4(8): 1159-1168.

Hasegawa, H., M. M. Rahman, K. Kadohashi, Y. Takasugi, Y.Tate, T. Maki and M. A. Rahman. 2012. Significance of the concentration of chelating ligands on Fe3+ solubility, bioavailability, and uptake in rice plant. Plant Physiology & Biochemistry, 58: 205–211.

Hashem, M. and K. A. Abo-Elyousr. 2011. Management of the root knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Protection, 30: 285-292.

Hashem, M., Y. A. Omran and N. M. A. Sallam. 2008. Efficacy of yeasts in the management of root-knot nematode Meloidogyne incognita, in Flame Seedless grape vines and the consequent effect on the productivity of the vines. Biocontrol Science and Technology, 18: 357-375.

Henderson, C. F. and E. W. Tilton. 1955. Tests with acaricides against the brown wheat mite. Journal of Economic Entomology,48: 157-161.

Hussain, M. A., T. Mukhtar and M. Z. Kayani. 2011. Efficacy evaluation of Azadirachta indica, Calotrops procera, Datura stramonium and Tagetes erecta against root-knot nematodes Meloidogyne incognita. Pakistan Journal of Botany, 43: 197-204.

Hussey, R. S. and K. R. Barker. 1973. Acomparison of methods collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57: 1025-1028.

Jamshidnejad, V., N. Sahebani and H. Etebarian. 2013. Potential biocontrol activity of Arthrobotrys oligospora and Trichoderma harzianum BI against Meloidogyne javanica on tomato in the greenhouse and laboratory studies. Archives of Phytopathology and Plant Protection, 46: 1477-2906.

Jang, J. Y., Y. H. Choi, T. S. Shin, T. H. Kim, K. S. Shin, H. W. Park, Y. H. Kim, H. Kim, G. J. Choi, K. S. Jang, B. Cha, I. S. Kim, E. J. Myung and J. C. Kim. 2016. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS ONE, 11: e0156230.

Karajeh, M. R. 2013. Efficacy of Saccharomyces cerevisiae on controlling the root-knot nematode (Meloidogyne javanica) infection and promoting cucumber growth and yield under laboratory and field conditions. Archives of Phytopathology and Plant Protection, 46: 2492–2500.

Khajuria, A. and P. Ohri. 2018. Exogenously applied putrescine improves the physiological responses of tomato plant during nematode pathogenesis. Scientia Horticulturae, 230: 35–42.

Khan, A., K. L. Williams and H. K. M. Nevalainen. 2004. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 31:346–352.

Kowalska, J., J. Krzymińska and J. Tyburski. 2022. Yeasts as a Potential Biological Agent in Plant Disease Protection and Yield Improvement—A Short Review. Agriculture, 12: 1404.

Mahdy, M. E. 2002. Biological control of plant parasitic nematodes with antagonistic bacteria on different host plants. Ph. D. Thesis, Bonn University, Germany, P. 171.

Mahmoud, T. R. 2001. Botanical studies on growth and germination of Magnolia ‘Magnolia grandiflora L.’ Plants, Ph.D. thesis, Faculty of Agriculture Moshtohor, Zagazig University.

Mioranza, T. M., K. R. F. Schwan-Estrada, L. Zubek, A. Miamoto, I. Hernandes, B. B. Rissato, M. S. Mizuno, R. F. Schwan and C. R. Dias-Arieira. 2020. Effects of yeast fermentation broths on the Meloidogyne incognita population in soybean. Tropical Plant Pathology, 45: 112-121.

Mokbel, A. A., I. M. Obad and I. K. A. Ibrahim .2009. The role of antagonistic metabolites in controlling root-knot nematode, Meloidogyne arenaria on tomato. Alexandria Journal of Agricultural Research,54: 199–205.

Moller, L., B. Lerm and A. Botha. 2016. Interactions of arboreal yeast endophytes: an unexplored discipline. Fungal Ecology, 22: 73-82.

Moor, T. C. 1979. Biochemistry and physiology of plant hormones, New York: Springer.

Mori, T. and M. Sakurai. 1995. Effects of riboflavin and increased sucrose on anthocyanin production in suspended strawberry cell cultures. Plant Science, 110: 147–153.

Mostafa, E. A. M. 2004. Effect of spraying with ascorbic acid, vitamin B and active dry yeast on growth, flowering, leaf mineral status, yield and fruit quality of Grand Nain banana plants. Annals of Agricultural Sciences, 49: 643–659

Mousa, E. M. 1997. Geographical distribution of root-knot nematodes and their threats to agriculture in Egypt. Proc. 1st Inter. Afro-Asian Nematology workshop. Menoufiya, Egypt, 1: 49-56.

Moussa, L. and H. Zawam. 2010. Efficacy of some biocontrol agents on reproduction and development of Meloidogyne incognita infecting tomato. Journal of American Science, 6: 295-509.

Nagodawithana, W. T. 1991. Yeast technology. Universal foods cooperation Milwauke. Wisconsin. New York: Van Nostrand.

Nassar, A. H., K. A. EI-Tarabily and K. Sivasithamparam. 2005. Promotion of plant growth by an auxin producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biology and Fertility of Soils, 42: 97–108.

Nie, S. and H. Xu. 2016. Riboflavin-induced disease resistance requires the mitogen-activated protein kinases 3 and 6 in Arabidopsis thaliana. PLoS ONE, 11(4): e0153175.

Nikoo, F. S., N. Sahebani, H. Aminian, L. Mokhtarnejad and R. Ghaderi. 2014. Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. Journal of Plant Protection Research, 54: 383–389.

Norton, D. C. 1978. Ecology of plant parasitic nematode. John Willey and Sons. New York, pp. 238.

Noweer, E. M. and S. A. Hasabo. 2005. Effect of different management practices for controlling root-knot nematode Meloidogyne incognita on squash. Egyptian Journal of Phytopathology, 33: 73-81.

Osman, H. A., H. H. Ameen, M. Mohamed and U. S. Elkelany. 2020. Efficacy of integrated microorganisms in controlling root-knot nematode Meloidogyne javanica infecting peanut plants under field conditions. Bulletin of the National Research Centre, 44: 1-10.

Papon, N., V. Savini, A. Lanoue, A. J. Simkin, J. Cre`che, N. Giglioli-Guivarc’h, M. Clastre, V. Courdavault and A. A. Sibirny. 2013. Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Current genetics, 59: 73–90.

Poorniammal, R. and S. Prabhu. 2022. Plant Growth Promoting Activity and Biocontrol Potential of Soil Yeast. International Journal of Agriculture, Environment and Biotechnology, 15: 75-80.

Hamouda, R., A. M. Al-Saman, S. Mostafa and S. M. El-Ansary. 2019. Effect of Saccharomyces cerevisiae and Spirulina platensis on suppressing root-knot nematode, Meloidogyne incognita infecting banana plants under greenhouse conditions. Egyptian journal of Agronematology, 18: 90 -102.

Regaieg, H., A. Ciancio, N. H. Raouani, G. Grasso and L. Rosso. 2010. Effects of culture filtrates from the nematophagous fungus Verticillium leptobactrum on viability of the root-knot nematode Meloidogyne incognita. World Journal of Microbiology and Biotechnology, 26: 2285–2289.

Sasser, J. 1987. A perspective on nematode problems worldwide. In: Proceedings Nematodes Parasitic to Cereals and Legumesin Temperature Semiarid Regions, Larnaca, Cyprus. ICARDA, Aleppo, Syria. pp. 1–12

Sasser, J. N. 1980. Root-knot nematode: A global menace to crop production. Plant Disease, 63: 36-41.

Seo, Y. and Y. H. Kim. 2014. Control of Meloidogyne incognita using mixture of organic acids. The Plant Pathology Journal, 30: 450–455.

Shalaby, M. E. and M. F. El-Nady.2008. Application of Saccharomyces cerevisiae as a biocontrol agent against Fusarium infection of sugar beet plants. Acta Biologica Szegediensis, 52: 275-271.

Shawky, S., R. Z. El-shennawy and A. M. Shady. 2006. Biological control of Meloidogyne javanica on tomato plants with isolated bioagent in Egypt. Journal of Plant Protection and Pathology, 37: 6049-6063.

Somer, R. 1987. Yeast Production. Hefeautolysate Herstellung, Eigenschaften und Anwendungen. BDL-Spktrum 3, Bund Deutscher Lebensmittel eV. Rhenania Fachverlag, Hamburg.

Taheri, P. and S. Tarighi. 2010. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of plant Physiology, 167: 201–208.

Taylor, A. L. and J. N. Sasser. 1978. Biology, identification and control of root-knot nematodes (Meloidogyne spp.) International Meloidogyne project publication. North Carolina stat Univ., Raleigh, 111pp.

Wareing, P. E. and I. D. J. Phillips. 1970. The control of growth and differentiation in plants. 1st ed. Oxford: Pergamon Press; pp. 303.

West, T. P. 2013. Citric acid production by Candida spicies grown on a soy-based crude glycrole. Preparative Biochemistry & Biotechnology, 43: 601–611.

Wisniewski, M., C. Biles, S. Droby, R. McLaughlin, C. Wilson and E. Chalutz. 1991. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii.1. Characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology,39: 245-258.

Youssef, M. M. A. and M. M. Soliman. 1997. Effect of integrated management on Meloidogyne incognita infecting Egyptian henbane, Hyoscyamus muticus and on subsequent cowpea plant. 1st Scientific Conference of Agricultural Sciences, Assiut: Faculty of Agriculture, Assiut University; pp. 585–594.

Youssef, M. M. A. and W. El-Nagdi. 2021. Population density of Meloidogyne incognita and eggplant growth vigour affected by sucrose-activated bread yeast (Saccharomyces cerevisiae). Pakistan Journal of Nematology, 36 :117-122

Zhang, D. P., D. Spadaro, S. Valente, A. Garibaldi and M. L. Gullino. 2011. Cloning, characterization and expression of an exo-1,3-betaglucanase gene from the antagonistic yeast, Pichia guilliermondii strain M8 against grey mold on apples. Biological Control, 59: 284–293.

Zhao, Y., K. Tu, X. F. Shao, W. Jing and Z. P. Su. 2008. Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit. Postharvest Biology and Technology, 49: 113–120.




DOI: https://doi.org/10.33866/phytopathol.036.01.0937

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ramadan Abdelmoneim Bakr

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.